Timezone: »
Contributed talks in Session 2 (Zoom)
Martin Takac · Samuel Horváth · Guan-Horng Liu · Nicolas Loizou · Sharan Vaswani
Join us to hear some new, exciting work at the intersection of optimization and ML. Come and ask questions and join the discussion.
Speakers: Samuel Horvath, "Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization" Guan-Horng Liu, "DDPNOpt: Differential Dynamic Programming Neural Optimizer" Nicolas Loizou, "Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence" Sharan Vaswani, "Adaptive Gradient Methods Converge Faster with Over-Parameterization (and you can do a line-search)" Sharan Vaswani, "How to make your optimizer generalize better"
You can find a video on the NeurIPS website where the speakers discuss in detail their paper.
Author Information
Martin Takac (Lehigh University)
Samuel Horváth (King Abdullah University of Science and Technology)
Guan-Horng Liu (Georgia Institute of Technology)
Nicolas Loizou ( Mila, Université de Montréal )
Sharan Vaswani (University of Alberta)
More from the Same Authors
-
2020 : Optimal Client Sampling for Federated Learning »
Samuel Horváth -
2021 Spotlight: Second-Order Neural ODE Optimizer »
Guan-Horng Liu · Tianrong Chen · Evangelos Theodorou -
2021 Spotlight: FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout »
Samuel Horváth · Stefanos Laskaridis · Mario Almeida · Ilias Leontiadis · Stylianos Venieris · Nicholas Lane -
2021 : Random-reshuffled SARAH does not need a full gradient computations »
Aleksandr Beznosikov · Martin Takac -
2021 : Towards Noise-adaptive, Problem-adaptive Stochastic Gradient Descent »
Sharan Vaswani · Benjamin Dubois-Taine · Reza Babanezhad Harikandeh -
2021 : On the convergence of stochastic extragradient for bilinear games using restarted iteration averaging »
Chris Junchi Li · Yaodong Yu · Nicolas Loizou · Gauthier Gidel · Yi Ma · Nicolas Le Roux perso · Michael Jordan -
2021 : On the convergence of stochastic extragradient for bilinear games using restarted iteration averaging »
Chris Junchi Li · Yaodong Yu · Nicolas Loizou · Gauthier Gidel · Yi Ma · Nicolas Le Roux perso · Michael Jordan -
2021 : FedMix: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning »
Elnur Gasanov · Ahmed Khaled Ragab Bayoumi · Samuel Horváth · Peter Richtarik -
2021 : FedMix: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning »
Elnur Gasanov · Ahmed Khaled Ragab Bayoumi · Samuel Horváth · Peter Richtarik -
2021 : Likelihood Training of Schrödinger Bridges using Forward-Backward SDEs Theory »
Tianrong Chen · Guan-Horng Liu · Evangelos Theodorou -
2022 Workshop: Order up! The Benefits of Higher-Order Optimization in Machine Learning »
Jarad Forristal · Jelena Diakonikolas · Brandon Reese · Martin Takac · Yan Xu · Albert Berahas -
2021 : Poster Session 1 (gather.town) »
Hamed Jalali · Robert Hönig · Maximus Mutschler · Manuel Madeira · Abdurakhmon Sadiev · Egor Shulgin · Alasdair Paren · Pascal Esser · Simon Roburin · Julius Kunze · Agnieszka Słowik · Frederik Benzing · Futong Liu · Hongyi Li · Ryotaro Mitsuboshi · Grigory Malinovsky · Jayadev Naram · Zhize Li · Igor Sokolov · Sharan Vaswani -
2021 Workshop: OPT 2021: Optimization for Machine Learning »
Courtney Paquette · Quanquan Gu · Oliver Hinder · Katya Scheinberg · Sebastian Stich · Martin Takac -
2021 Poster: Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth Games: Convergence Analysis under Expected Co-coercivity »
Nicolas Loizou · Hugo Berard · Gauthier Gidel · Ioannis Mitliagkas · Simon Lacoste-Julien -
2021 Poster: FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout »
Samuel Horváth · Stefanos Laskaridis · Mario Almeida · Ilias Leontiadis · Stylianos Venieris · Nicholas Lane -
2021 Poster: Second-Order Neural ODE Optimizer »
Guan-Horng Liu · Tianrong Chen · Evangelos Theodorou -
2020 : Closing remarks »
Quanquan Gu · Courtney Paquette · Mark Schmidt · Sebastian Stich · Martin Takac -
2020 : Poster Session 2 (gather.town) »
Sharan Vaswani · Nicolas Loizou · Wenjie Li · Preetum Nakkiran · Zhan Gao · Sina Baghal · Jingfeng Wu · Roozbeh Yousefzadeh · Jinyi Wang · Jing Wang · Cong Xie · Anastasia Borovykh · Stanislaw Jastrzebski · Soham Dan · Yiliang Zhang · Mark Tuddenham · Sarath Pattathil · Ievgen Redko · Jeremy Cohen · Yasaman Esfandiari · Zhanhong Jiang · Mostafa ElAraby · Chulhee Yun · Michael Psenka · Robert Gower · Xiaoyu Wang -
2020 : Live Q&A with Suvrit Sra (Zoom) »
Martin Takac -
2020 : Intro to Invited Speaker 5 »
Martin Takac -
2020 : Contributed Video: Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization, Samuel Horvath »
Samuel Horváth -
2020 : Contributed Video: Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence, Nicolas Loizou »
Nicolas Loizou -
2020 : Contributed Video: DDPNOpt: Differential Dynamic Programming Neural Optimizer, Guan-Horng Liu »
Guan-Horng Liu -
2020 : Contributed Video: Adaptive Gradient Methods Converge Faster with Over-Parameterization (and you can do a line-search), Sharan Vaswani »
Sharan Vaswani -
2020 : Contributed Video: How to make your optimizer generalize better, Sharan Vaswani »
Sharan Vaswani -
2020 : Live Q&A with Donald Goldfarb (Zoom) »
Martin Takac -
2020 : Live Q&A with Andreas Krause (Zoom) »
Martin Takac -
2020 : Welcome remarks to Session 2 »
Martin Takac -
2020 : Poster Session 1 (gather.town) »
Laurent Condat · Tiffany Vlaar · Ohad Shamir · Mohammadi Zaki · Zhize Li · Guan-Horng Liu · Samuel Horváth · Mher Safaryan · Yoni Choukroun · Kumar Shridhar · Nabil Kahale · Jikai Jin · Pratik Kumar Jawanpuria · Gaurav Kumar Yadav · Kazuki Koyama · Junyoung Kim · Xiao Li · Saugata Purkayastha · Adil Salim · Dighanchal Banerjee · Peter Richtarik · Lakshman Mahto · Tian Ye · Bamdev Mishra · Huikang Liu · Jiajie Zhu -
2020 Workshop: OPT2020: Optimization for Machine Learning »
Courtney Paquette · Mark Schmidt · Sebastian Stich · Quanquan Gu · Martin Takac -
2020 : Welcome event (gather.town) »
Quanquan Gu · Courtney Paquette · Mark Schmidt · Sebastian Stich · Martin Takac -
2020 Poster: Lower Bounds and Optimal Algorithms for Personalized Federated Learning »
Filip Hanzely · Slavomír Hanzely · Samuel Horváth · Peter Richtarik -
2019 : Poster Session »
Eduard Gorbunov · Alexandre d'Aspremont · Lingxiao Wang · Liwei Wang · Boris Ginsburg · Alessio Quaglino · Camille Castera · Saurabh Adya · Diego Granziol · Rudrajit Das · Raghu Bollapragada · Fabian Pedregosa · Martin Takac · Majid Jahani · Sai Praneeth Karimireddy · Hilal Asi · Balint Daroczy · Leonard Adolphs · Aditya Rawal · Nicolas Brandt · Minhan Li · Giuseppe Ughi · Orlando Romero · Ivan Skorokhodov · Damien Scieur · Kiwook Bae · Konstantin Mishchenko · Rohan Anil · Vatsal Sharan · Aditya Balu · Chao Chen · Zhewei Yao · Tolga Ergen · Paul Grigas · Chris Junchi Li · Jimmy Ba · Stephen J Roberts · Sharan Vaswani · Armin Eftekhari · Chhavi Sharma -
2019 Poster: Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates »
Sharan Vaswani · Aaron Mishkin · Issam Laradji · Mark Schmidt · Gauthier Gidel · Simon Lacoste-Julien -
2018 Poster: Reinforcement Learning for Solving the Vehicle Routing Problem »
MohammadReza Nazari · Afshin Oroojlooy · Lawrence Snyder · Martin Takac -
2016 Poster: A Multi-Batch L-BFGS Method for Machine Learning »
Albert Berahas · Jorge Nocedal · Martin Takac -
2014 Poster: Communication-Efficient Distributed Dual Coordinate Ascent »
Martin Jaggi · Virginia Smith · Martin Takac · Jonathan Terhorst · Sanjay Krishnan · Thomas Hofmann · Michael Jordan