Timezone: »
Contributed talks in Session 3 (Zoom)
Mark Schmidt · Zhan Gao · Wenjie Li · Preetum Nakkiran · Denny Wu · Chengrun Yang
Join us to hear some new, exciting work at the intersection of optimization and ML. Come and ask questions and join the discussion.
Speakers: Zhan Gao, "Incremental Greedy BFGS: An Incremental Quasi-Newton Method with Explicit Superlinear Rate" Wenjie Li, "Variance Reduction on Adaptive Stochastic Mirror Descent" Preetum Nakkiran, "Learning Rate Annealing Can Provably Help Generalization, Even for Convex Problems" Denny Wu, "When Does Preconditioning Help or Hurt Generalization?" Chengrun Yang, "TenIPS: Inverse Propensity Sampling for Tensor Completion"
You can find a video on the NeurIPS website where the speakers discuss in detail their paper.
Author Information
Mark Schmidt (University of British Columbia)
Zhan Gao (University of Pennsylvania)
Wenjie Li (Purdue University)
Preetum Nakkiran (Harvard)
Denny Wu (University of Toronto & Vector Institute)
Chengrun Yang (Cornell University)
More from the Same Authors
-
2021 : Heavy-tailed noise does not explain the gap between SGD and Adam on Transformers »
Jacques Chen · Frederik Kunstner · Mark Schmidt -
2021 : Heavy-tailed noise does not explain the gap between SGD and Adam on Transformers »
Jacques Chen · Frederik Kunstner · Mark Schmidt -
2021 : Optimum-statistical Collaboration Towards Efficient Black-boxOptimization »
Wenjie Li · Chi-Hua Wang · Guang Cheng -
2021 : Faster Quasi-Newton Methods for Linear Composition Problems »
Betty Shea · Mark Schmidt -
2021 : A Closer Look at Gradient Estimators with Reinforcement Learning as Inference »
Jonathan Lavington · Michael Teng · Mark Schmidt · Frank Wood -
2021 : An Empirical Study of Non-Uniform Sampling in Off-Policy Reinforcement Learning for Continuous Control »
Nicholas Ioannidis · Jonathan Lavington · Mark Schmidt -
2022 : APE: Aligning Pretrained Encoders to Quickly Learn Aligned Multimodal Representations »
Elan Rosenfeld · Preetum Nakkiran · Hadi Pouransari · Oncel Tuzel · Fartash Faghri -
2022 : Target-based Surrogates for Stochastic Optimization »
Jonathan Lavington · Sharan Vaswani · Reza Babanezhad Harikandeh · Mark Schmidt · Nicolas Le Roux -
2022 : Fast Convergence of Greedy 2-Coordinate Updates for Optimizing with an Equality Constraint »
Amrutha Varshini Ramesh · Aaron Mishkin · Mark Schmidt -
2022 : Fast Convergence of Random Reshuffling under Interpolation and the Polyak-Łojasiewicz Condition »
Chen Fan · Christos Thrampoulidis · Mark Schmidt -
2022 : Deconstructing Distributions: A Pointwise Framework of Learning »
Gal Kaplun · Nikhil Ghosh · Saurabh Garg · Boaz Barak · Preetum Nakkiran -
2022 : Practical Structured Riemannian Optimization with Momentum by using Generalized Normal Coordinates »
Wu Lin · Valentin Duruisseaux · Melvin Leok · Frank Nielsen · Mohammad Emtiyaz Khan · Mark Schmidt -
2022 Poster: High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation »
Jimmy Ba · Murat Erdogdu · Taiji Suzuki · Zhichao Wang · Denny Wu · Greg Yang -
2022 Poster: Two-layer neural network on infinite dimensional data: global optimization guarantee in the mean-field regime »
Naoki Nishikawa · Taiji Suzuki · Atsushi Nitanda · Denny Wu -
2022 Poster: TabNAS: Rejection Sampling for Neural Architecture Search on Tabular Datasets »
Chengrun Yang · Gabriel Bender · Hanxiao Liu · Pieter-Jan Kindermans · Madeleine Udell · Yifeng Lu · Quoc V Le · Da Huang -
2021 : Poster Session 2 (gather.town) »
Wenjie Li · Akhilesh Soni · Jinwuk Seok · Jianhao Ma · Jeffery Kline · Mathieu Tuli · Miaolan Xie · Robert Gower · Quanqi Hu · Matteo Cacciola · Yuanlu Bai · Boyue Li · Wenhao Zhan · Shentong Mo · Junhyung Lyle Kim · Sajad Fathi Hafshejani · Chris Junchi Li · Zhishuai Guo · Harshvardhan Harshvardhan · Neha Wadia · Tatjana Chavdarova · Difan Zou · Zixiang Chen · Aman Gupta · Jacques Chen · Betty Shea · Benoit Dherin · Aleksandr Beznosikov -
2021 Poster: Particle Dual Averaging: Optimization of Mean Field Neural Network with Global Convergence Rate Analysis »
Atsushi Nitanda · Denny Wu · Taiji Suzuki -
2021 Poster: Revisiting Model Stitching to Compare Neural Representations »
Yamini Bansal · Preetum Nakkiran · Boaz Barak -
2020 : Closing remarks »
Quanquan Gu · Courtney Paquette · Mark Schmidt · Sebastian Stich · Martin Takac -
2020 : Poster Session 3 (gather.town) »
Denny Wu · Chengrun Yang · Tolga Ergen · sanae lotfi · Charles Guille-Escuret · Boris Ginsburg · Hanbake Lyu · Cong Xie · David Newton · Debraj Basu · Yewen Wang · James Lucas · MAOJIA LI · Lijun Ding · Jose Javier Gonzalez Ortiz · Reyhane Askari Hemmat · Zhiqi Bu · Neal Lawton · Kiran Thekumparampil · Jiaming Liang · Lindon Roberts · Jingyi Zhu · Dongruo Zhou -
2020 : Live Q&A with Michael Friedlander (Zoom) »
Mark Schmidt -
2020 : Intro to Invited Speaker 8 »
Mark Schmidt -
2020 : Contributed Video: Variance Reduction on Adaptive Stochastic Mirror Descent, Wenjie Li »
Wenjie Li -
2020 : Contributed Video: Learning Rate Annealing Can Provably Help Generalization, Even for Convex Problems, Preetum Nakkiran »
Preetum Nakkiran -
2020 : Contributed Video: When Does Preconditioning Help or Hurt Generalization?, Denny Wu »
Denny Wu -
2020 : Contributed Video: Incremental Greedy BFGS: An Incremental Quasi-Newton Method with Explicit Superlinear Rate, Zhan Gao »
Zhan Gao -
2020 : Contributed Video: TenIPS: Inverse Propensity Sampling for Tensor Completion, Chengrun Yang »
Chengrun Yang -
2020 : Live Q&A with Rachel Ward (Zoom) »
Mark Schmidt -
2020 : Live Q&A with Ashia Wilson (Zoom) »
Mark Schmidt -
2020 : Welcome remarks to Session 3 »
Mark Schmidt -
2020 : Poster Session 2 (gather.town) »
Sharan Vaswani · Nicolas Loizou · Wenjie Li · Preetum Nakkiran · Zhan Gao · Sina Baghal · Jingfeng Wu · Roozbeh Yousefzadeh · Jinyi Wang · Jing Wang · Cong Xie · Anastasia Borovykh · Stanislaw Jastrzebski · Soham Dan · Yiliang Zhang · Mark Tuddenham · Sarath Pattathil · Ievgen Redko · Jeremy Cohen · Yasaman Esfandiari · Zhanhong Jiang · Mostafa ElAraby · Chulhee Yun · Michael Psenka · Robert Gower · Xiaoyu Wang -
2020 Workshop: OPT2020: Optimization for Machine Learning »
Courtney Paquette · Mark Schmidt · Sebastian Stich · Quanquan Gu · Martin Takac -
2020 : Welcome event (gather.town) »
Quanquan Gu · Courtney Paquette · Mark Schmidt · Sebastian Stich · Martin Takac -
2020 Poster: On the Optimal Weighted $\ell_2$ Regularization in Overparameterized Linear Regression »
Denny Wu · Ji Xu -
2020 Poster: Regret Bounds without Lipschitz Continuity: Online Learning with Relative-Lipschitz Losses »
Yihan Zhou · Victor Sanches Portella · Mark Schmidt · Nicholas Harvey -
2019 Poster: SGD on Neural Networks Learns Functions of Increasing Complexity »
Dimitris Kalimeris · Gal Kaplun · Preetum Nakkiran · Benjamin Edelman · Tristan Yang · Boaz Barak · Haofeng Zhang -
2019 Spotlight: SGD on Neural Networks Learns Functions of Increasing Complexity »
Dimitris Kalimeris · Gal Kaplun · Preetum Nakkiran · Benjamin Edelman · Tristan Yang · Boaz Barak · Haofeng Zhang -
2019 Poster: Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates »
Sharan Vaswani · Aaron Mishkin · Issam Laradji · Mark Schmidt · Gauthier Gidel · Simon Lacoste-Julien -
2019 Poster: Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond »
Xuechen (Chen) Li · Denny Wu · Lester Mackey · Murat Erdogdu -
2019 Spotlight: Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond »
Xuechen (Chen) Li · Denny Wu · Lester Mackey · Murat Erdogdu -
2018 : Poster Session I »
Aniruddh Raghu · Daniel Jarrett · Kathleen Lewis · Elias Chaibub Neto · Nicholas Mastronarde · Shazia Akbar · Chun-Hung Chao · Henghui Zhu · Seth Stafford · Luna Zhang · Jen-Tang Lu · Changhee Lee · Adityanarayanan Radhakrishnan · Fabian Falck · Liyue Shen · Daniel Neil · Yusuf Roohani · Aparna Balagopalan · Brett Marinelli · Hagai Rossman · Sven Giesselbach · Jose Javier Gonzalez Ortiz · Edward De Brouwer · Byung-Hoon Kim · Rafid Mahmood · Tzu Ming Hsu · Antonio Ribeiro · Rumi Chunara · Agni Orfanoudaki · Kristen Severson · Mingjie Mai · Sonali Parbhoo · Albert Haque · Viraj Prabhu · Di Jin · Alena Harley · Geoffroy Dubourg-Felonneau · Xiaodan Hu · Maithra Raghu · Jonathan Warrell · Nelson Johansen · Wenyuan Li · Marko Järvenpää · Satya Narayan Shukla · Sarah Tan · Vincent Fortuin · Beau Norgeot · Yi-Te Hsu · Joel H Saltz · Veronica Tozzo · Andrew Miller · Guillaume Ausset · Azin Asgarian · Francesco Paolo Casale · Antoine Neuraz · Bhanu Pratap Singh Rawat · Turgay Ayer · Xinyu Li · Mehul Motani · Nathaniel Braman · Laetitia M Shao · Adrian Dalca · Hyunkwang Lee · Emma Pierson · Sandesh Ghimire · Yuji Kawai · Owen Lahav · Anna Goldenberg · Denny Wu · Pavitra Krishnaswamy · Colin Pawlowski · Arijit Ukil · Yuhui Zhang -
2018 : OBOE: Collaborative Filtering for AutoML Initialization »
Chengrun Yang -
2018 Poster: SLANG: Fast Structured Covariance Approximations for Bayesian Deep Learning with Natural Gradient »
Aaron Mishkin · Frederik Kunstner · Didrik Nielsen · Mark Schmidt · Mohammad Emtiyaz Khan -
2016 : Fast Patch-based Style Transfer of Arbitrary Style »
Tian Qi Chen · Mark Schmidt -
2015 Poster: StopWasting My Gradients: Practical SVRG »
Reza Babanezhad Harikandeh · Mohamed Osama Ahmed · Alim Virani · Mark Schmidt · Jakub Konečný · Scott Sallinen