Timezone: »
Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. Similarly, federated analytics (FA) allows data scientists to generate analytical insight from the combined information in distributed datasets without requiring data centralization. Federated approaches embody the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches.
Motivated by the explosive growth in federated learning and analytics research, this tutorial will provide a gentle introduction to the area. The focus will be on cross-device federated learning, including deep dives on federated optimization and differentially privacy, but federated analytics and cross-silo federated learning will also be discussed. In addition to optimization and privacy, we will also introduce personalization, robustness, fairness, and systems challenges in the federated setting with an emphasis on open problems.
Author Information
Brendan McMahan (Google)
Virginia Smith (Carnegie Mellon University)
Peter Kairouz (Google)
Peter Kairouz is a Google Research Scientist working on decentralized, privacy-preserving, and robust machine learning algorithms. Prior to Google, his research largely focused on building decentralized technologies for anonymous broadcasting over complex networks, understanding the fundamental trade-off between differential privacy and utility of learning algorithms, and leveraging state-of-the-art deep generative models for data-driven privacy and fairness.
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Tutorial: (Track1) Federated Learning and Analytics: Industry Meets Academia Q&A »
Thu. Dec 10th 08:00 -- 08:50 PM Room
More from the Same Authors
-
2021 : Communication Efficient Federated Learning with Secure Aggregation and Differential Privacy »
Wei-Ning Chen · Christopher Choquette-Choo · Peter Kairouz -
2022 : Differentially Private Adaptive Optimization with Delayed Preconditioners »
Tian Li · Manzil Zaheer · Ken Liu · Sashank Reddi · H. Brendan McMahan · Virginia Smith -
2022 : Differentially Private Adaptive Optimization with Delayed Preconditioners »
Tian Li · Manzil Zaheer · Ken Liu · Sashank Reddi · H. Brendan McMahan · Virginia Smith -
2022 : Motley: Benchmarking Heterogeneity and Personalization in Federated Learning »
Shanshan Wu · Tian Li · Zachary Charles · Yu Xiao · Ken Liu · Zheng Xu · Virginia Smith -
2022 : Bitrate-Constrained DRO: Beyond Worst Case Robustness To Unknown Group Shifts »
Amrith Setlur · Don Dennis · Benjamin Eysenbach · Aditi Raghunathan · Chelsea Finn · Virginia Smith · Sergey Levine -
2022 : Panel »
Virginia Smith · Michele Covell · Daniel Severo · Christopher Schroers -
2022 : Invited Talk: Peter Kairouz - The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning »
Peter Kairouz -
2022 : To Federate or Not To Federate: Incentivizing Client Participation in Federated Learning »
Yae Jee Cho · Divyansh Jhunjhunwala · Tian Li · Virginia Smith · Gauri Joshi -
2022 Poster: On Privacy and Personalization in Cross-Silo Federated Learning »
Ken Liu · Shengyuan Hu · Steven Wu · Virginia Smith -
2022 Poster: Adversarial Unlearning: Reducing Confidence Along Adversarial Directions »
Amrith Setlur · Benjamin Eysenbach · Virginia Smith · Sergey Levine -
2021 : Q&A with A/Professor Virginia Smith »
Virginia Smith -
2021 : Keynote Talk: Fair or Robust: Addressing Competing Constraints in Federated Learning (Virginia Smith) »
Virginia Smith -
2021 Poster: Two Sides of Meta-Learning Evaluation: In vs. Out of Distribution »
Amrith Setlur · Oscar Li · Virginia Smith -
2021 Poster: Differentially Private Learning with Adaptive Clipping »
Galen Andrew · Om Thakkar · Brendan McMahan · Swaroop Ramaswamy -
2021 Poster: Pointwise Bounds for Distribution Estimation under Communication Constraints »
Wei-Ning Chen · Peter Kairouz · Ayfer Ozgur -
2021 Poster: The Skellam Mechanism for Differentially Private Federated Learning »
Naman Agarwal · Peter Kairouz · Ken Liu -
2021 Poster: On Large-Cohort Training for Federated Learning »
Zachary Charles · Zachary Garrett · Zhouyuan Huo · Sergei Shmulyian · Virginia Smith -
2021 Poster: Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing »
Mikhail Khodak · Renbo Tu · Tian Li · Liam Li · Maria-Florina Balcan · Virginia Smith · Ameet Talwalkar -
2020 Poster: Privacy Amplification via Random Check-Ins »
Borja Balle · Peter Kairouz · Brendan McMahan · Om Thakkar · Abhradeep Guha Thakurta -
2020 Poster: Breaking the Communication-Privacy-Accuracy Trilemma »
Wei-Ning Chen · Peter Kairouz · Ayfer Ozgur -
2019 : Privacy for Federated Learning, and Federated Learning for Privacy »
Brendan McMahan -
2019 : Lunch break and poster »
Felix Sattler · Khaoula El Mekkaoui · Neta Shoham · Cheng Hong · Florian Hartmann · Boyue Li · Daliang Li · Sebastian Caldas Rivera · Jianyu Wang · Kartikeya Bhardwaj · Tribhuvanesh Orekondy · YAN KANG · Dashan Gao · Mingshu Cong · Xin Yao · Songtao Lu · JIAHUAN LUO · Shicong Cen · Peter Kairouz · Yihan Jiang · Tzu Ming Hsu · Aleksei Triastcyn · Yang Liu · Ahmed Khaled Ragab Bayoumi · Zhicong Liang · Boi Faltings · Seungwhan Moon · Suyi Li · Tao Fan · Tianchi Huang · Chunyan Miao · Hang Qi · Matthew Brown · Lucas Glass · Junpu Wang · Wei Chen · Radu Marculescu · tomer avidor · Xueyang Wu · Mingyi Hong · Ce Ju · John Rush · Ruixiao Zhang · Youchi ZHOU · Françoise Beaufays · Yingxuan Zhu · Lei Xia -
2019 Workshop: Workshop on Federated Learning for Data Privacy and Confidentiality »
Lixin Fan · Jakub Konečný · Yang Liu · Brendan McMahan · Virginia Smith · Han Yu -
2018 : Prof. Virginia Smith »
Virginia Smith -
2018 : Brendan McMahan »
Brendan McMahan -
2018 Poster: Graph Oracle Models, Lower Bounds, and Gaps for Parallel Stochastic Optimization »
Blake Woodworth · Jialei Wang · Adam Smith · Brendan McMahan · Nati Srebro -
2018 Spotlight: Graph Oracle Models, Lower Bounds, and Gaps for Parallel Stochastic Optimization »
Blake Woodworth · Jialei Wang · Adam Smith · Brendan McMahan · Nati Srebro -
2018 Poster: cpSGD: Communication-efficient and differentially-private distributed SGD »
Naman Agarwal · Ananda Theertha Suresh · Felix Xinnan Yu · Sanjiv Kumar · Brendan McMahan -
2018 Spotlight: cpSGD: Communication-efficient and differentially-private distributed SGD »
Naman Agarwal · Ananda Theertha Suresh · Felix Xinnan Yu · Sanjiv Kumar · Brendan McMahan -
2015 Poster: Secure Multi-party Differential Privacy »
Peter Kairouz · Sewoong Oh · Pramod Viswanath -
2014 Poster: Extremal Mechanisms for Local Differential Privacy »
Peter Kairouz · Sewoong Oh · Pramod Viswanath -
2014 Poster: Delay-Tolerant Algorithms for Asynchronous Distributed Online Learning »
Brendan McMahan · Matthew Streeter -
2013 Poster: Minimax Optimal Algorithms for Unconstrained Linear Optimization »
Brendan McMahan · Jacob D Abernethy -
2013 Poster: Estimation, Optimization, and Parallelism when Data is Sparse »
John Duchi · Michael Jordan · Brendan McMahan -
2012 Poster: No-Regret Algorithms for Unconstrained Online Convex Optimization »
Matthew Streeter · Brendan McMahan