Timezone: »
Adversarial data augmentation has shown promise for training robust deep neural networks against unforeseen data shifts or corruptions. However, it is difficult to define heuristics to generate effective fictitious target distributions containing "hard" adversarial perturbations that are largely different from the source distribution. In this paper, we propose a novel and effective regularization term for adversarial data augmentation. We theoretically derive it from the information bottleneck principle, which results in a maximum-entropy formulation. Intuitively, this regularization term encourages perturbing the underlying source distribution to enlarge predictive uncertainty of the current model, so that the generated "hard" adversarial perturbations can improve the model robustness during training. Experimental results on three standard benchmarks demonstrate that our method consistently outperforms the existing state of the art by a statistically significant margin.
Author Information
Long Zhao (Rutgers University)
Ting Liu (Google)
Xi Peng (University of Delaware)
Dimitris Metaxas (Rutgers University)
More from the Same Authors
-
2022 : Graph-Relational Distributionally Robust Optimization »
Fengchun Qiao · Xi Peng -
2023 Poster: LEPARD: Learning Explicit Part Discovery for 3D Articulated Shape Reconstruction »
Di Liu · Anastasis Stathopoulos · Qilong Zhangli · Yunhe Gao · Dimitris Metaxas -
2023 Competition: Foundation Model Prompting for Medical Image Classification Challenge 2023 »
Dequan Wang · Xiaosong Wang · Qian Da · DOU QI · · Shaoting Zhang · Dimitris Metaxas -
2021 Poster: Improved Transformer for High-Resolution GANs »
Long Zhao · Zizhao Zhang · Ting Chen · Dimitris Metaxas · Han Zhang -
2020 Poster: A Topological Filter for Learning with Label Noise »
Pengxiang Wu · Songzhu Zheng · Mayank Goswami · Dimitris Metaxas · Chao Chen -
2020 Poster: Deep Subspace Clustering with Data Augmentation »
Mahdi Abavisani · Alireza Naghizadeh · Dimitris Metaxas · Vishal Patel -
2019 Poster: Rethinking Kernel Methods for Node Representation Learning on Graphs »
Yu Tian · Long Zhao · Xi Peng · Dimitris Metaxas -
2017 : Poster Session »
Tsz Kit Lau · Johannes Maly · Nicolas Loizou · Christian Kroer · Yuan Yao · Youngsuk Park · Reka Agnes Kovacs · Dong Yin · Vlad Zhukov · Woosang Lim · David Barmherzig · Dimitris Metaxas · Bin Shi · Rajan Udwani · William Brendel · Yi Zhou · Vladimir Braverman · Sijia Liu · Eugene Golikov -
2014 Poster: Mode Estimation for High Dimensional Discrete Tree Graphical Models »
Chao Chen · Han Liu · Dimitris Metaxas · Tianqi Zhao -
2014 Spotlight: Mode Estimation for High Dimensional Discrete Tree Graphical Models »
Chao Chen · Han Liu · Dimitris Metaxas · Tianqi Zhao