Timezone: »
The increasing impact of black box models, and particularly of unsupervised ones, comes with an increasing interest in tools to understand and interpret them. In this paper, we consider in particular how to characterise visual groupings discovered automatically by deep neural networks, starting with state-of-the-art clustering methods. In some cases, clusters readily correspond to an existing labelled dataset. However, often they do not, yet they still maintain an "intuitive interpretability''. We introduce two concepts, visual learnability and describability, that can be used to quantify the interpretability of arbitrary image groupings, including unsupervised ones. The idea is to measure (1) how well humans can learn to reproduce a grouping by measuring their ability to generalise from a small set of visual examples (learnability) and (2) whether the set of visual examples can be replaced by a succinct, textual description (describability). By assessing human annotators as classifiers, we remove the subjective quality of existing evaluation metrics. For better scalability, we finally propose a class-level captioning system to generate descriptions for visual groupings automatically and compare it to human annotators using the describability metric.
Author Information
Iro Laina (University of Oxford)
Ruth Fong (University of Oxford)
Andrea Vedaldi (Facebook AI Research and University of Oxford)
More from the Same Authors
-
2021 : ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation »
Laurynas Karazija · Iro Laina · Christian Rupprecht -
2022 : Direct LiDAR-based object detector training from automated 2D detections »
Robert McCraith · Eldar Insafutdinov · Lukas Neumann · Andrea Vedaldi -
2023 Poster: Contrastive Lift: 3D Object Instance Segmentation by Slow-Fast Contrastive Fusion »
Yash Bhalgat · Iro Laina · João Henriques · Andrea Vedaldi · Andrew Zisserman -
2023 Poster: Improving Category Discovery When No Representation Rules Them All »
Sagar Vaze · Andrea Vedaldi · Andrew Zisserman -
2023 Poster: EPIC Fields: Marrying 3D Geometry and Video Understanding »
Vadim Tschernezki · Ahmad Darkhalil · Zhifan Zhu · David Fouhey · Iro Laina · Diane Larlus · Dima Damen · Andrea Vedaldi -
2022 Poster: Unsupervised Multi-Object Segmentation by Predicting Probable Motion Patterns »
Laurynas Karazija · Subhabrata Choudhury · Iro Laina · Christian Rupprecht · Andrea Vedaldi -
2021 Poster: Unsupervised Part Discovery from Contrastive Reconstruction »
Subhabrata Choudhury · Iro Laina · Christian Rupprecht · Andrea Vedaldi -
2020 Poster: RELATE: Physically Plausible Multi-Object Scene Synthesis Using Structured Latent Spaces »
Sebastien Ehrhardt · Oliver Groth · Aron Monszpart · Martin Engelcke · Ingmar Posner · Niloy Mitra · Andrea Vedaldi -
2019 Poster: Fixing the train-test resolution discrepancy »
Hugo Touvron · Andrea Vedaldi · Matthijs Douze · Herve Jegou -
2018 Poster: Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks »
Jie Hu · Li Shen · Samuel Albanie · Gang Sun · Andrea Vedaldi -
2018 Poster: Modelling and unsupervised learning of symmetric deformable object categories »
James Thewlis · Hakan Bilen · Andrea Vedaldi -
2018 Poster: Unsupervised Learning of Object Landmarks through Conditional Image Generation »
Tomas Jakab · Ankush Gupta · Hakan Bilen · Andrea Vedaldi -
2017 Workshop: Interpreting, Explaining and Visualizing Deep Learning - Now what ? »
Klaus-Robert Müller · Andrea Vedaldi · Lars K Hansen · Wojciech Samek · Grégoire Montavon -
2017 Poster: Learning multiple visual domains with residual adapters »
Sylvestre-Alvise Rebuffi · Hakan Bilen · Andrea Vedaldi -
2017 Spotlight: Learning multiple visual domains with residual adapters »
Sylvestre-Alvise Rebuffi · Hakan Bilen · Andrea Vedaldi -
2017 Poster: Unsupervised learning of object frames by dense equivariant image labelling »
James Thewlis · Hakan Bilen · Andrea Vedaldi -
2017 Oral: Unsupervised learning of object frames by dense equivariant image labelling »
James Thewlis · Hakan Bilen · Andrea Vedaldi -
2016 Poster: Learning feed-forward one-shot learners »
Luca Bertinetto · João Henriques · Jack Valmadre · Philip Torr · Andrea Vedaldi -
2016 Poster: Integrated perception with recurrent multi-task neural networks »
Hakan Bilen · Andrea Vedaldi -
2013 Poster: Deep Fisher Networks for Large-Scale Image Classification »
Karen Simonyan · Andrea Vedaldi · Andrew Zisserman -
2013 Spotlight: Deep Fisher Networks for Large-Scale Image Classification »
Karen Simonyan · Andrea Vedaldi · Andrew Zisserman -
2011 Poster: Pylon Model for Semantic Segmentation »
Victor Lempitsky · Andrea Vedaldi · Andrew Zisserman -
2010 Poster: Simultaneous Object Detection and Ranking with Weak Supervision »
Matthew B Blaschko · Andrea Vedaldi · Andrew Zisserman -
2009 Poster: Structured output regression for detection with partial truncation »
Andrea Vedaldi · Andrew Zisserman -
2006 Poster: A Rate-Distortion Approach to Joint Pattern Alignment »
Andrea Vedaldi