Timezone: »
Motivated by the prevailing paradigm of using unsupervised learning for efficient exploration in reinforcement learning (RL) problems [tang2017exploration,bellemare2016unifying], we investigate when this paradigm is provably efficient. We study episodic Markov decision processes with rich observations generated from a small number of latent states. We present a general algorithmic framework that is built upon two components: an unsupervised learning algorithm and a no-regret tabular RL algorithm. Theoretically, we prove that as long as the unsupervised learning algorithm enjoys a polynomial sample complexity guarantee, we can find a near-optimal policy with sample complexity polynomial in the number of latent states, which is significantly smaller than the number of observations. Empirically, we instantiate our framework on a class of hard exploration problems to demonstrate the practicality of our theory.
Author Information
Fei Feng (University of California, Los Angeles)
Ruosong Wang (Carnegie Mellon University)
Wotao Yin (Alibaba US, DAMO Academy)
Simon Du (Institute for Advanced Study)
Lin Yang (UCLA)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Poster: Provably Efficient Exploration for Reinforcement Learning Using Unsupervised Learning »
Tue Dec 8th 05:00 -- 07:00 AM Room Poster Session 0
More from the Same Authors
-
2020 Poster: Over-parameterized Adversarial Training: An Analysis Overcoming the Curse of Dimensionality »
Yi Zhang · Orestis Plevrakis · Simon Du · Xingguo Li · Zhao Song · Sanjeev Arora -
2020 Poster: An Improved Analysis of Stochastic Gradient Descent with Momentum »
Yanli Liu · Yuan Gao · Wotao Yin -
2020 Poster: Planning with General Objective Functions: Going Beyond Total Rewards »
Ruosong Wang · Peilin Zhong · Simon Du · Russ Salakhutdinov · Lin Yang -
2020 Poster: Is Long Horizon RL More Difficult Than Short Horizon RL? »
Ruosong Wang · Simon Du · Lin Yang · Sham Kakade -
2020 Poster: Toward the Fundamental Limits of Imitation Learning »
Nived Rajaraman · Lin Yang · Jiantao Jiao · Kannan Ramchandran -
2020 Poster: Is Plug-in Solver Sample-Efficient for Feature-based Reinforcement Learning? »
Qiwen Cui · Lin Yang -
2020 Poster: Preference-based Reinforcement Learning with Finite-Time Guarantees »
Yichong Xu · Ruosong Wang · Lin Yang · Aarti Singh · Artur Dubrawski -
2020 Spotlight: Preference-based Reinforcement Learning with Finite-Time Guarantees »
Yichong Xu · Ruosong Wang · Lin Yang · Aarti Singh · Artur Dubrawski -
2020 Poster: Agnostic $Q$-learning with Function Approximation in Deterministic Systems: Near-Optimal Bounds on Approximation Error and Sample Complexity »
Simon Du · Jason Lee · Gaurav Mahajan · Ruosong Wang -
2020 Poster: An Improved Analysis of (Variance-Reduced) Policy Gradient and Natural Policy Gradient Methods »
Yanli Liu · Kaiqing Zhang · Tamer Basar · Wotao Yin -
2020 Poster: On Reward-Free Reinforcement Learning with Linear Function Approximation »
Ruosong Wang · Simon Du · Lin Yang · Russ Salakhutdinov -
2020 Poster: Reinforcement Learning with General Value Function Approximation: Provably Efficient Approach via Bounded Eluder Dimension »
Ruosong Wang · Russ Salakhutdinov · Lin Yang -
2020 Poster: Model-Based Multi-Agent RL in Zero-Sum Markov Games with Near-Optimal Sample Complexity »
Kaiqing Zhang · Sham Kakade · Tamer Basar · Lin Yang -
2020 Spotlight: Model-Based Multi-Agent RL in Zero-Sum Markov Games with Near-Optimal Sample Complexity »
Kaiqing Zhang · Sham Kakade · Tamer Basar · Lin Yang -
2019 Poster: Towards Understanding the Importance of Shortcut Connections in Residual Networks »
Tianyi Liu · Minshuo Chen · Mo Zhou · Simon Du · Enlu Zhou · Tuo Zhao -
2019 Poster: Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels »
Simon Du · Kangcheng Hou · Russ Salakhutdinov · Barnabas Poczos · Ruosong Wang · Keyulu Xu -
2019 Poster: Efficient Symmetric Norm Regression via Linear Sketching »
Zhao Song · Ruosong Wang · Lin Yang · Hongyang Zhang · Peilin Zhong -
2019 Poster: Acceleration via Symplectic Discretization of High-Resolution Differential Equations »
Bin Shi · Simon Du · Weijie Su · Michael Jordan -
2019 Poster: Provably Efficient Q-learning with Function Approximation via Distribution Shift Error Checking Oracle »
Simon Du · Yuping Luo · Ruosong Wang · Hanrui Zhang -
2019 Poster: On Exact Computation with an Infinitely Wide Neural Net »
Sanjeev Arora · Simon Du · Wei Hu · Zhiyuan Li · Russ Salakhutdinov · Ruosong Wang -
2019 Spotlight: On Exact Computation with an Infinitely Wide Neural Net »
Sanjeev Arora · Simon Du · Wei Hu · Zhiyuan Li · Russ Salakhutdinov · Ruosong Wang