Timezone: »
The idea of slicing divergences has been proven to be successful when comparing two probability measures in various machine learning applications including generative modeling, and consists in computing the expected value of a `base divergence' between \emph{one-dimensional random projections} of the two measures. However, the topological, statistical, and computational consequences of this technique have not yet been well-established. In this paper, we aim at bridging this gap and derive various theoretical properties of sliced probability divergences. First, we show that slicing preserves the metric axioms and the weak continuity of the divergence, implying that the sliced divergence will share similar topological properties. We then precise the results in the case where the base divergence belongs to the class of integral probability metrics. On the other hand, we establish that, under mild conditions, the sample complexity of a sliced divergence does not depend on the problem dimension. We finally apply our general results to several base divergences, and illustrate our theory on both synthetic and real data experiments.
Author Information
Kimia Nadjahi (Télécom Paris)
Alain Durmus (ENS Paris Saclay)
Lénaïc Chizat (CNRS)
Soheil Kolouri (HRL Laboratories LLC)
**Soheil Kolouri** is an Assistant Professor of Computer Science at Vanderbilt University, Nashville, TN, where he runs the Machine Intelligence and Neural Technologies (MINT) lab. Soheil is broadly interested in applied mathematics, machine learning, and computer vision. He also has a standing interest in computational optimal transport and geometry. Before joining Vanderbilt, Soheil was a research scientist and a principal investigator at HRL Laboratories, Malibu, CA. He was the PI on DARPA Learning with Less Labels (LwLL) and the Co-PI on DARPA Lifelong Learning Machines (L2M) programs. He obtained his Ph.D. in Biomedical Engineering from Carnegie Mellon University, where he received the Bertucci Fellowship Award for outstanding graduate students from the College of Engineering in 2014, and the Outstanding Dissertation Award from the Biomedical Engineering Department in 2015.
Shahin Shahrampour (Texas A&M University)
Umut Simsekli (Inria/ENS)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Spotlight: Statistical and Topological Properties of Sliced Probability Divergences »
Thu. Dec 10th 04:20 -- 04:30 PM Room Orals & Spotlights: Probabilistic Models/Statistics
More from the Same Authors
-
2021 Spotlight: Fractal Structure and Generalization Properties of Stochastic Optimization Algorithms »
Alexander Camuto · George Deligiannidis · Murat Erdogdu · Mert Gurbuzbalaban · Umut Simsekli · Lingjiong Zhu -
2022 Affinity Workshop: Women in Machine Learning - Virtual »
Mariam Arab · Konstantina Palla · Sergul Aydore · Gloria Namanya · Beliz Gunel · Kimia Nadjahi · Soomin Aga Lee -
2022 Poster: Chaotic Regularization and Heavy-Tailed Limits for Deterministic Gradient Descent »
Soon Hoe Lim · Yijun Wan · Umut Simsekli -
2022 Poster: Generalization Bounds for Stochastic Gradient Descent via Localized $\varepsilon$-Covers »
Sejun Park · Umut Simsekli · Murat Erdogdu -
2022 Poster: Local-Global MCMC kernels: the best of both worlds »
Sergey Samsonov · Evgeny Lagutin · Marylou Gabrié · Alain Durmus · Alexey Naumov · Eric Moulines -
2022 Poster: FedPop: A Bayesian Approach for Personalised Federated Learning »
Nikita Kotelevskii · Maxime Vono · Alain Durmus · Eric Moulines -
2022 Affinity Workshop: Women in Machine Learning »
Mariam Arab · Konstantina Palla · Sergul Aydore · Gloria Namanya · Beliz Gunel · Kimia Nadjahi · Soomin Aga Lee -
2021 : Entropic Regularization of Optimal Transport as a Statistical Regularization »
Lénaïc Chizat -
2021 Poster: Heavy Tails in SGD and Compressibility of Overparametrized Neural Networks »
Melih Barsbey · Milad Sefidgaran · Murat Erdogdu · Gaël Richard · Umut Simsekli -
2021 Poster: Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks »
Tolga Birdal · Aaron Lou · Leonidas Guibas · Umut Simsekli -
2021 Poster: NEO: Non Equilibrium Sampling on the Orbits of a Deterministic Transform »
Achille Thin · Yazid Janati El Idrissi · Sylvain Le Corff · Charles Ollion · Eric Moulines · Arnaud Doucet · Alain Durmus · Christian X Robert -
2021 Poster: Convergence Rates of Stochastic Gradient Descent under Infinite Noise Variance »
Hongjian Wang · Mert Gurbuzbalaban · Lingjiong Zhu · Umut Simsekli · Murat Erdogdu -
2021 Poster: Pooling by Sliced-Wasserstein Embedding »
Navid Naderializadeh · Joseph F Comer · Reed Andrews · Heiko Hoffmann · Soheil Kolouri -
2021 Poster: Fast Approximation of the Sliced-Wasserstein Distance Using Concentration of Random Projections »
Kimia Nadjahi · Alain Durmus · Pierre E Jacob · Roland Badeau · Umut Simsekli -
2021 Poster: Fractal Structure and Generalization Properties of Stochastic Optimization Algorithms »
Alexander Camuto · George Deligiannidis · Murat Erdogdu · Mert Gurbuzbalaban · Umut Simsekli · Lingjiong Zhu -
2021 Poster: Tight High Probability Bounds for Linear Stochastic Approximation with Fixed Stepsize »
Alain Durmus · Eric Moulines · Alexey Naumov · Sergey Samsonov · Kevin Scaman · Hoi-To Wai -
2020 Poster: Faster Wasserstein Distance Estimation with the Sinkhorn Divergence »
Lénaïc Chizat · Pierre Roussillon · Flavien Léger · François-Xavier Vialard · Gabriel Peyré -
2020 Poster: Explicit Regularisation in Gaussian Noise Injections »
Alexander Camuto · Matthew Willetts · Umut Simsekli · Stephen J Roberts · Chris C Holmes -
2020 Poster: Hausdorff Dimension, Heavy Tails, and Generalization in Neural Networks »
Umut Simsekli · Ozan Sener · George Deligiannidis · Murat Erdogdu -
2020 Poster: Quantitative Propagation of Chaos for SGD in Wide Neural Networks »
Valentin De Bortoli · Alain Durmus · Xavier Fontaine · Umut Simsekli -
2020 Spotlight: Hausdorff Dimension, Heavy Tails, and Generalization in Neural Networks »
Umut Simsekli · Ozan Sener · George Deligiannidis · Murat Erdogdu -
2019 Poster: Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance »
Kimia Nadjahi · Alain Durmus · Umut Simsekli · Roland Badeau -
2019 Spotlight: Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance »
Kimia Nadjahi · Alain Durmus · Umut Simsekli · Roland Badeau -
2019 Poster: First Exit Time Analysis of Stochastic Gradient Descent Under Heavy-Tailed Gradient Noise »
Thanh Huy Nguyen · Umut Simsekli · Mert Gurbuzbalaban · Gaël RICHARD -
2019 Poster: On Lazy Training in Differentiable Programming »
Lénaïc Chizat · Edouard Oyallon · Francis Bach -
2019 Poster: Copula-like Variational Inference »
Marcel Hirt · Petros Dellaportas · Alain Durmus -
2019 Poster: Generalized Sliced Wasserstein Distances »
Soheil Kolouri · Kimia Nadjahi · Umut Simsekli · Roland Badeau · Gustavo Rohde -
2018 Poster: Learning Bounds for Greedy Approximation with Explicit Feature Maps from Multiple Kernels »
Shahin Shahrampour · Vahid Tarokh -
2018 Poster: The promises and pitfalls of Stochastic Gradient Langevin Dynamics »
Nicolas Brosse · Alain Durmus · Eric Moulines -
2018 Poster: Bayesian Pose Graph Optimization via Bingham Distributions and Tempered Geodesic MCMC »
Tolga Birdal · Umut Simsekli · Mustafa Onur Eken · Slobodan Ilic -
2018 Poster: On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport »
Lénaïc Chizat · Francis Bach -
2017 Poster: Learning the Morphology of Brain Signals Using Alpha-Stable Convolutional Sparse Coding »
Mainak Jas · Tom Dupré la Tour · Umut Simsekli · Alexandre Gramfort -
2017 Poster: On Optimal Generalizability in Parametric Learning »
Ahmad Beirami · Meisam Razaviyayn · Shahin Shahrampour · Vahid Tarokh -
2016 Poster: Stochastic Gradient Richardson-Romberg Markov Chain Monte Carlo »
Alain Durmus · Umut Simsekli · Eric Moulines · Roland Badeau · Gaël RICHARD -
2013 Poster: Online Learning of Dynamic Parameters in Social Networks »
Shahin Shahrampour · Sasha Rakhlin · Ali Jadbabaie -
2011 Poster: Generalised Coupled Tensor Factorisation »
Kenan Y Yılmaz · Taylan Cemgil · Umut Simsekli