Timezone: »
We introduce a novel, end-to-end learnable, differentiable non-rigid tracker that enables state-of-the-art non-rigid reconstruction by a learned robust optimization. Given two input RGB-D frames of a non-rigidly moving object, we employ a convolutional neural network to predict dense correspondences and their confidences. These correspondences are used as constraints in an as-rigid-as-possible (ARAP) optimization problem. By enabling gradient back-propagation through the weighted non-linear least squares solver, we are able to learn correspondences and confidences in an end-to-end manner such that they are optimal for the task of non-rigid tracking. Under this formulation, correspondence confidences can be learned via self-supervision, informing a learned robust optimization, where outliers and wrong correspondences are automatically down-weighted to enable effective tracking. Compared to state-of-the-art approaches, our algorithm shows improved reconstruction performance, while simultaneously achieving 85 times faster correspondence prediction than comparable deep-learning based methods.
Author Information
Aljaz Bozic (Technical University Munich)
Pablo Palafox (Technical University Munich)
Michael Zollhöfer (Stanford University)
Angela Dai (Technical University of Munich)
Justus Thies (Technical University of Munich)
Matthias Niessner (Technical University of Munich)
More from the Same Authors
-
2022 Poster: PatchComplete: Learning Multi-Resolution Patch Priors for 3D Shape Completion on Unseen Categories »
Yuchen Rao · Yinyu Nie · Angela Dai -
2022 Spotlight: Lightning Talks 6A-3 »
Junyu Xie · Chengliang Zhong · Ali Ayub · Sravanti Addepalli · Harsh Rangwani · Jiapeng Tang · Yuchen Rao · Zhiying Jiang · Yuqi Wang · Xingzhe He · Gene Chou · Ilya Chugunov · Samyak Jain · Yuntao Chen · Weidi Xie · Sumukh K Aithal · Carter Fendley · Lev Markhasin · Yiqin Dai · Peixing You · Bastian Wandt · Yinyu Nie · Helge Rhodin · Felix Heide · Ji Xin · Angela Dai · Andrew Zisserman · Bi Wang · Xiaoxue Chen · Mayank Mishra · ZHAO-XIANG ZHANG · Venkatesh Babu R · Justus Thies · Ming Li · Hao Zhao · Venkatesh Babu R · Jimmy Lin · Fuchun Sun · Matthias Niessner · Guyue Zhou · Xiaodong Mu · Chuang Gan · Wenbing Huang -
2022 Spotlight: PatchComplete: Learning Multi-Resolution Patch Priors for 3D Shape Completion on Unseen Categories »
Yuchen Rao · Yinyu Nie · Angela Dai -
2022 Spotlight: Neural Shape Deformation Priors »
Jiapeng Tang · Lev Markhasin · Bi Wang · Justus Thies · Matthias Niessner -
2022 Spotlight: 3DILG: Irregular Latent Grids for 3D Generative Modeling »
Biao Zhang · Matthias Niessner · Peter Wonka -
2022 Poster: Neural Shape Deformation Priors »
Jiapeng Tang · Lev Markhasin · Bi Wang · Justus Thies · Matthias Niessner -
2022 Poster: 3DILG: Irregular Latent Grids for 3D Generative Modeling »
Biao Zhang · Matthias Niessner · Peter Wonka -
2022 Poster: The Unreasonable Effectiveness of Fully-Connected Layers for Low-Data Regimes »
Peter Kocsis · Peter Súkeník · Guillem Braso · Matthias Niessner · Laura Leal-Taixé · Ismail Elezi -
2021 Poster: TransformerFusion: Monocular RGB Scene Reconstruction using Transformers »
Aljaz Bozic · Pablo Palafox · Justus Thies · Angela Dai · Matthias Niessner -
2021 Poster: Panoptic 3D Scene Reconstruction From a Single RGB Image »
Manuel Dahnert · Ji Hou · Matthias Niessner · Angela Dai -
2020 : Angela Dai - Self-supervised generation of 3D shapes and scenes »
Angela Dai