Timezone: »
Neural implicit shape representations are an emerging paradigm that offers many potential benefits over conventional discrete representations, including memory efficiency at a high spatial resolution. Generalizing across shapes with such neural implicit representations amounts to learning priors over the respective function space and enables geometry reconstruction from partial or noisy observations. Existing generalization methods rely on conditioning a neural network on a low-dimensional latent code that is either regressed by an encoder or jointly optimized in the auto-decoder framework. Here, we formalize learning of a shape space as a meta-learning problem and leverage gradient-based meta-learning algorithms to solve this task. We demonstrate that this approach performs on par with auto-decoder based approaches while being an order of magnitude faster at test-time inference. We further demonstrate that the proposed gradient-based method outperforms encoder-decoder based methods that leverage pooling-based set encoders.
Author Information
Vincent Sitzmann (MIT)
Vincent is an incoming Assistant Professor at MIT EECS, where he will lead the Scene Representation Group (scenerepresentations.org). Currently, he is a Postdoc at MIT's CSAIL with Josh Tenenbaum, Bill Freeman, and Fredo Durand. He finished his Ph.D. at Stanford University. His research interest lies in neural scene representations - the way neural networks learn to represent information on our world. His goal is to allow independent agents to reason about our world given visual observations, such as inferring a complete model of a scene with information on geometry, material, lighting etc. from only few observations, a task that is simple for humans, but currently impossible for AI.
Eric Chan (Stanford University)
Richard Tucker (Google)
Noah Snavely (Cornell University and Google AI)
Gordon Wetzstein (Stanford University)
More from the Same Authors
-
2020 : An Ethical Highlighter for People-Centric Dataset Creation »
Margot Hanley · Apoorv Khandelwal · Hadar Averbuch-Elor · Noah Snavely · Helen Nissenbaum -
2021 Spotlight: Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering »
Vincent Sitzmann · Semon Rezchikov · Bill Freeman · Josh Tenenbaum · Fredo Durand -
2021 : 3D Neural Scene Representations for Visuomotor Control »
Yunzhu Li · Shuang Li · Vincent Sitzmann · Pulkit Agrawal · Antonio Torralba -
2021 : 3D Neural Scene Representations for Visuomotor Control »
Yunzhu Li · Shuang Li · Vincent Sitzmann · Pulkit Agrawal · Antonio Torralba -
2022 : Learning Controllable Adaptive Simulation for Multi-scale Physics »
Tailin Wu · Takashi Maruyama · Qingqing Zhao · Gordon Wetzstein · Jure Leskovec -
2022 : Heterogeneous reconstruction of deformable atomic models in Cryo-EM »
Youssef Nashed · Ariana Peck · Julien Martel · Axel Levy · Bongjin Koo · Gordon Wetzstein · Nina Miolane · Daniel Ratner · Frederic Poitevin -
2022 Poster: NeuForm: Adaptive Overfitting for Neural Shape Editing »
Connor Lin · Niloy Mitra · Gordon Wetzstein · Leonidas Guibas · Paul Guerrero -
2022 Poster: Generative Neural Articulated Radiance Fields »
Alexander Bergman · Petr Kellnhofer · Wang Yifan · Eric Chan · David Lindell · Gordon Wetzstein -
2022 Poster: Amortized Inference for Heterogeneous Reconstruction in Cryo-EM »
Axel Levy · Gordon Wetzstein · Julien N.P Martel · Frederic Poitevin · Ellen Zhong -
2022 Poster: Decomposing NeRF for Editing via Feature Field Distillation »
Sosuke Kobayashi · Eiichi Matsumoto · Vincent Sitzmann -
2021 : 3D Neural Scene Representations for Visuomotor Control »
Yunzhu Li · Shuang Li · Vincent Sitzmann · Pulkit Agrawal · Antonio Torralba -
2021 : Gordon Wetzstein Talk »
Gordon Wetzstein -
2021 Poster: Learning Signal-Agnostic Manifolds of Neural Fields »
Yilun Du · Katie Collins · Josh Tenenbaum · Vincent Sitzmann -
2021 Poster: Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering »
Vincent Sitzmann · Semon Rezchikov · Bill Freeman · Josh Tenenbaum · Fredo Durand -
2021 Poster: Fast Training of Neural Lumigraph Representations using Meta Learning »
Alexander Bergman · Petr Kellnhofer · Gordon Wetzstein -
2020 Poster: Implicit Neural Representations with Periodic Activation Functions »
Vincent Sitzmann · Julien N.P Martel · Alexander Bergman · David Lindell · Gordon Wetzstein -
2020 Oral: Implicit Neural Representations with Periodic Activation Functions »
Vincent Sitzmann · Julien N.P Martel · Alexander Bergman · David Lindell · Gordon Wetzstein -
2020 Poster: Multi-Plane Program Induction with 3D Box Priors »
Yikai Li · Jiayuan Mao · Xiuming Zhang · Bill Freeman · Josh Tenenbaum · Noah Snavely · Jiajun Wu -
2020 Poster: An Analysis of SVD for Deep Rotation Estimation »
Jake Levinson · Carlos Esteves · Kefan Chen · Noah Snavely · Angjoo Kanazawa · Afshin Rostamizadeh · Ameesh Makadia -
2019 Poster: Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations »
Vincent Sitzmann · Michael Zollhoefer · Gordon Wetzstein -
2019 Oral: Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations »
Vincent Sitzmann · Michael Zollhoefer · Gordon Wetzstein