Timezone: »
While deep learning and deep reinforcement learning (RL) systems have demonstrated impressive results in domains such as image classification, game playing, and robotic control, data efficiency remains a major challenge. Multi-task learning has emerged as a promising approach for sharing structure across multiple tasks to enable more efficient learning. However, the multi-task setting presents a number of optimization challenges, making it difficult to realize large efficiency gains compared to learning tasks independently. The reasons why multi-task learning is so challenging compared to single-task learning are not fully understood. In this work, we identify a set of three conditions of the multi-task optimization landscape that cause detrimental gradient interference, and develop a simple yet general approach for avoiding such interference between task gradients. We propose a form of gradient surgery that projects a task's gradient onto the normal plane of the gradient of any other task that has a gradient. On a series of challenging multi-task supervised and multi-task RL problems, this approach leads to substantial gains in efficiency and performance. Further, it is model-agnostic and can be combined with previously-proposed multi-task architectures for enhanced performance.
Author Information
Tianhe Yu (Stanford University)
Saurabh Kumar (Stanford University)
Abhishek Gupta (UC Berkeley)
Sergey Levine (UC Berkeley)
Karol Hausman (Google Brain)
Chelsea Finn (Stanford)
More from the Same Authors
-
2021 Spotlight: Robust Predictable Control »
Ben Eysenbach · Russ Salakhutdinov · Sergey Levine -
2021 Spotlight: Offline Reinforcement Learning as One Big Sequence Modeling Problem »
Michael Janner · Qiyang Li · Sergey Levine -
2021 Spotlight: Efficiently Identifying Task Groupings for Multi-Task Learning »
Chris Fifty · Ehsan Amid · Zhe Zhao · Tianhe Yu · Rohan Anil · Chelsea Finn -
2021 Spotlight: Pragmatic Image Compression for Human-in-the-Loop Decision-Making »
Sid Reddy · Anca Dragan · Sergey Levine -
2021 : MESA: Offline Meta-RL for Safe Adaptation and Fault Tolerance »
Michael Luo · Ashwin Balakrishna · Brijen Thananjeyan · Suraj Nair · Julian Ibarz · Jie Tan · Chelsea Finn · Ion Stoica · Ken Goldberg -
2021 : Bridge Data: Boosting Generalization of Robotic Skills with Cross-Domain Datasets »
Frederik Ebert · Yanlai Yang · Karl Schmeckpeper · Bernadette Bucher · Kostas Daniilidis · Chelsea Finn · Sergey Levine -
2021 : Hybrid Imitative Planning with Geometric and Predictive Costs in Offroad Environments »
· Daniel Shin · Nick Rhinehart · Ali Agha · David D Fan · Sergey Levine -
2021 : Lifelong Robotic Reinforcement Learning by Retaining Experiences »
Annie Xie · Chelsea Finn -
2021 : Correct-N-Contrast: A Contrastive Approach for Improving Robustness to Spurious Correlations »
Michael Zhang · Nimit Sohoni · Hongyang Zhang · Chelsea Finn · Christopher Ré -
2021 : Extending the WILDS Benchmark for Unsupervised Adaptation »
Shiori Sagawa · Pang Wei Koh · Tony Lee · Irena Gao · Sang Michael Xie · Kendrick Shen · Ananya Kumar · Weihua Hu · Michihiro Yasunaga · Henrik Marklund · Sara Beery · Ian Stavness · Jure Leskovec · Kate Saenko · Tatsunori Hashimoto · Sergey Levine · Chelsea Finn · Percy Liang -
2021 : Test Time Robustification of Deep Models via Adaptation and Augmentation »
Marvin Zhang · Sergey Levine · Chelsea Finn -
2021 : The Reflective Explorer: Online Meta-Exploration from Offline Data in Realistic Robotic Tasks »
Rafael Rafailov · · Tianhe Yu · Avi Singh · Mariano Phielipp · Chelsea Finn -
2021 : Value Function Spaces: Skill-Centric State Abstractions for Long-Horizon Reasoning »
· Ted Xiao · Alexander Toshev · Sergey Levine · brian ichter -
2021 : Data Sharing without Rewards in Multi-Task Offline Reinforcement Learning »
Tianhe Yu · Aviral Kumar · Yevgen Chebotar · Chelsea Finn · Sergey Levine · Karol Hausman -
2021 : Should I Run Offline Reinforcement Learning or Behavioral Cloning? »
Aviral Kumar · Joey Hong · Anikait Singh · Sergey Levine -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 : Offline Reinforcement Learning with In-sample Q-Learning »
Ilya Kostrikov · Ashvin Nair · Sergey Levine -
2021 : C-Planning: An Automatic Curriculum for Learning Goal-Reaching Tasks »
Tianjun Zhang · Ben Eysenbach · Russ Salakhutdinov · Sergey Levine · Joseph Gonzalez -
2021 : The Information Geometry of Unsupervised Reinforcement Learning »
Ben Eysenbach · Russ Salakhutdinov · Sergey Levine -
2021 : Mismatched No More: Joint Model-Policy Optimization for Model-Based RL »
Ben Eysenbach · Alexander Khazatsky · Sergey Levine · Russ Salakhutdinov -
2021 : Offline Meta-Reinforcement Learning with Online Self-Supervision »
Vitchyr Pong · Ashvin Nair · Laura Smith · Catherine Huang · Sergey Levine -
2021 : Hybrid Imitative Planning with Geometric and Predictive Costs in Offroad Environments »
Daniel Shin · · Ali Agha · Nicholas Rhinehart · Sergey Levine -
2021 : CoMPS: Continual Meta Policy Search »
Glen Berseth · Zhiwei Zhang · Grace Zhang · Chelsea Finn · Sergey Levine -
2021 : Discriminator Augmented Model-Based Reinforcement Learning »
Allan Zhou · Archit Sharma · Chelsea Finn -
2021 : Curiosity with Chelsea Finn, Celeste Kidd, Timothy Verstynen »
Celeste Kidd · Chelsea Finn · Timothy Verstynen · Johnathan Flowers -
2021 : Offline Reinforcement Learning with Implicit Q-Learning »
Ilya Kostrikov · Ashvin Nair · Sergey Levine -
2021 : TRAIL: Near-Optimal Imitation Learning with Suboptimal Data »
Mengjiao Yang · Sergey Levine · Ofir Nachum -
2021 : Example-Based Offline Reinforcement Learning without Rewards »
Kyle Hatch · Tianhe Yu · Rafael Rafailov · Chelsea Finn -
2021 : The Reflective Explorer: Online Meta-Exploration from Offline Data in Realistic Robotic Tasks »
Rafael Rafailov · · Tianhe Yu · Avi Singh · Mariano Phielipp · Chelsea Finn -
2021 : Lifelong Robotic Reinforcement Learning by Retaining Experiences »
Annie Xie · Chelsea Finn -
2021 : Retrospective Panel »
Sergey Levine · Nando de Freitas · Emma Brunskill · Finale Doshi-Velez · Nan Jiang · Rishabh Agarwal -
2021 Workshop: Ecological Theory of Reinforcement Learning: How Does Task Design Influence Agent Learning? »
Manfred Díaz · Hiroki Furuta · Elise van der Pol · Lisa Lee · Shixiang (Shane) Gu · Pablo Samuel Castro · Simon Du · Marc Bellemare · Sergey Levine -
2021 : Discussion: Chelsea Finn, Masashi Sugiyama »
Chelsea Finn · Masashi Sugiyama -
2021 : Robustness through the Lens of Invariance »
Chelsea Finn -
2021 : Karol Hausman Talk Q&A »
Karol Hausman -
2021 : Invited Talk: Karol Hausman - Reinforcement Learning as a Data Sponge »
Karol Hausman -
2021 : Data-Driven Offline Optimization for Architecting Hardware Accelerators »
Aviral Kumar · Amir Yazdanbakhsh · Milad Hashemi · Kevin Swersky · Sergey Levine -
2021 : Sergey Levine Talk Q&A »
Sergey Levine -
2021 : Opinion Contributed Talk: Sergey Levine »
Sergey Levine -
2021 : Offline Meta-Reinforcement Learning with Online Self-Supervision Q&A »
Vitchyr Pong · Ashvin Nair · Laura Smith · Catherine Huang · Sergey Levine -
2021 : Offline Meta-Reinforcement Learning with Online Self-Supervision »
Vitchyr Pong · Ashvin Nair · Laura Smith · Catherine Huang · Sergey Levine -
2021 : Offline Meta-Reinforcement Learning with Online Self-Supervision »
Vitchyr Pong · Ashvin Nair · Laura Smith · Catherine Huang · Sergey Levine -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization Q&A »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 Workshop: Distribution shifts: connecting methods and applications (DistShift) »
Shiori Sagawa · Pang Wei Koh · Fanny Yang · Hongseok Namkoong · Jiashi Feng · Kate Saenko · Percy Liang · Sarah Bird · Sergey Levine -
2021 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · Chelsea Finn · David Silver · Matthew Taylor · Martha White · Srijita Das · Yuqing Du · Andrew Patterson · Manan Tomar · Olivia Watkins -
2021 Oral: Replacing Rewards with Examples: Example-Based Policy Search via Recursive Classification »
Ben Eysenbach · Sergey Levine · Russ Salakhutdinov -
2021 Poster: Visual Adversarial Imitation Learning using Variational Models »
Rafael Rafailov · Tianhe Yu · Aravind Rajeswaran · Chelsea Finn -
2021 Poster: Robust Predictable Control »
Ben Eysenbach · Russ Salakhutdinov · Sergey Levine -
2021 Poster: Efficiently Identifying Task Groupings for Multi-Task Learning »
Chris Fifty · Ehsan Amid · Zhe Zhao · Tianhe Yu · Rohan Anil · Chelsea Finn -
2021 Poster: Which Mutual-Information Representation Learning Objectives are Sufficient for Control? »
Kate Rakelly · Abhishek Gupta · Carlos Florensa · Sergey Levine -
2021 Poster: COMBO: Conservative Offline Model-Based Policy Optimization »
Tianhe Yu · Aviral Kumar · Rafael Rafailov · Aravind Rajeswaran · Sergey Levine · Chelsea Finn -
2021 Poster: Outcome-Driven Reinforcement Learning via Variational Inference »
Tim G. J. Rudner · Vitchyr Pong · Rowan McAllister · Yarin Gal · Sergey Levine -
2021 Poster: Bayesian Adaptation for Covariate Shift »
Aurick Zhou · Sergey Levine -
2021 Poster: Offline Reinforcement Learning as One Big Sequence Modeling Problem »
Michael Janner · Qiyang Li · Sergey Levine -
2021 Poster: Pragmatic Image Compression for Human-in-the-Loop Decision-Making »
Sid Reddy · Anca Dragan · Sergey Levine -
2021 Poster: Replacing Rewards with Examples: Example-Based Policy Search via Recursive Classification »
Ben Eysenbach · Sergey Levine · Russ Salakhutdinov -
2021 Poster: Information is Power: Intrinsic Control via Information Capture »
Nicholas Rhinehart · Jenny Wang · Glen Berseth · John Co-Reyes · Danijar Hafner · Chelsea Finn · Sergey Levine -
2021 Poster: Conservative Data Sharing for Multi-Task Offline Reinforcement Learning »
Tianhe Yu · Aviral Kumar · Yevgen Chebotar · Karol Hausman · Sergey Levine · Chelsea Finn -
2021 Poster: Meta-learning with an Adaptive Task Scheduler »
Huaxiu Yao · Yu Wang · Ying Wei · Peilin Zhao · Mehrdad Mahdavi · Defu Lian · Chelsea Finn -
2021 Poster: Noether Networks: meta-learning useful conserved quantities »
Ferran Alet · Dylan Doblar · Allan Zhou · Josh Tenenbaum · Kenji Kawaguchi · Chelsea Finn -
2021 Poster: Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit Partial Observability »
Dibya Ghosh · Jad Rahme · Aviral Kumar · Amy Zhang · Ryan Adams · Sergey Levine -
2021 Poster: Differentiable Annealed Importance Sampling and the Perils of Gradient Noise »
Guodong Zhang · Kyle Hsu · Jianing Li · Chelsea Finn · Roger Grosse -
2021 Poster: Autonomous Reinforcement Learning via Subgoal Curricula »
Archit Sharma · Abhishek Gupta · Sergey Levine · Karol Hausman · Chelsea Finn -
2021 Poster: Adaptive Risk Minimization: Learning to Adapt to Domain Shift »
Marvin Zhang · Henrik Marklund · Nikita Dhawan · Abhishek Gupta · Sergey Levine · Chelsea Finn -
2020 : Design-Bench: Benchmarks for Data-Driven Offline Model-Based Optimization »
Brandon Trabucco · Aviral Kumar · XINYANG GENG · Sergey Levine -
2020 : Conservative Objective Models: A Simple Approach to Effective Model-Based Optimization »
Brandon Trabucco · Aviral Kumar · XINYANG GENG · Sergey Levine -
2020 : Panel Discussion & Closing »
Yejin Choi · Alexei Efros · Chelsea Finn · Kristen Grauman · Quoc V Le · Yann LeCun · Ruslan Salakhutdinov · Eric Xing -
2020 : QA: Chelsea Finn »
Chelsea Finn -
2020 : Mini-panel discussion 3 - Prioritizing Real World RL Challenges »
Chelsea Finn · Thomas Dietterich · Angela Schoellig · Anca Dragan · Anusha Nagabandi · Doina Precup -
2020 : Invited Talk: Chelsea Finn »
Chelsea Finn -
2020 : Keynote: Chelsea Finn »
Chelsea Finn -
2020 : Panel »
Emma Brunskill · Nan Jiang · Nando de Freitas · Finale Doshi-Velez · Sergey Levine · John Langford · Lihong Li · George Tucker · Rishabh Agarwal · Aviral Kumar -
2020 : Contributed Talk: MaxEnt RL and Robust Control »
Benjamin Eysenbach · Sergey Levine -
2020 : Invited talk - Underfitting and Uncertainty in Self-Supervised Predictive Models »
Chelsea Finn -
2020 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · Chelsea Finn · Joelle Pineau · David Silver · Satinder Singh · Coline Devin · Misha Laskin · Kimin Lee · Janarthanan Rajendran · Vivek Veeriah -
2020 Poster: Weakly-Supervised Reinforcement Learning for Controllable Behavior »
Lisa Lee · Benjamin Eysenbach · Russ Salakhutdinov · Shixiang (Shane) Gu · Chelsea Finn -
2020 Poster: Model Inversion Networks for Model-Based Optimization »
Aviral Kumar · Sergey Levine -
2020 Poster: Continual Learning of Control Primitives : Skill Discovery via Reset-Games »
Kelvin Xu · Siddharth Verma · Chelsea Finn · Sergey Levine -
2020 Poster: Continuous Meta-Learning without Tasks »
James Harrison · Apoorva Sharma · Chelsea Finn · Marco Pavone -
2020 Poster: Rewriting History with Inverse RL: Hindsight Inference for Policy Improvement »
Benjamin Eysenbach · XINYANG GENG · Sergey Levine · Russ Salakhutdinov -
2020 Poster: Conservative Q-Learning for Offline Reinforcement Learning »
Aviral Kumar · Aurick Zhou · George Tucker · Sergey Levine -
2020 Oral: Rewriting History with Inverse RL: Hindsight Inference for Policy Improvement »
Benjamin Eysenbach · XINYANG GENG · Sergey Levine · Russ Salakhutdinov -
2020 Tutorial: (Track3) Offline Reinforcement Learning: From Algorithm Design to Practical Applications Q&A »
Sergey Levine · Aviral Kumar -
2020 Poster: Gamma-Models: Generative Temporal Difference Learning for Infinite-Horizon Prediction »
Michael Janner · Igor Mordatch · Sergey Levine -
2020 Poster: One Solution is Not All You Need: Few-Shot Extrapolation via Structured MaxEnt RL »
Saurabh Kumar · Aviral Kumar · Sergey Levine · Chelsea Finn -
2020 Poster: Long-Horizon Visual Planning with Goal-Conditioned Hierarchical Predictors »
Karl Pertsch · Oleh Rybkin · Frederik Ebert · Shenghao Zhou · Dinesh Jayaraman · Chelsea Finn · Sergey Levine -
2020 Poster: Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a Latent Variable Model »
Alex X. Lee · Anusha Nagabandi · Pieter Abbeel · Sergey Levine -
2020 Poster: Emergent Complexity and Zero-shot Transfer via Unsupervised Environment Design »
Michael Dennis · Natasha Jaques · Eugene Vinitsky · Alexandre Bayen · Stuart Russell · Andrew Critch · Sergey Levine -
2020 Poster: MOPO: Model-based Offline Policy Optimization »
Tianhe Yu · Garrett Thomas · Lantao Yu · Stefano Ermon · James Zou · Sergey Levine · Chelsea Finn · Tengyu Ma -
2020 Poster: DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction »
Aviral Kumar · Abhishek Gupta · Sergey Levine -
2020 Spotlight: DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction »
Aviral Kumar · Abhishek Gupta · Sergey Levine -
2020 Oral: Emergent Complexity and Zero-shot Transfer via Unsupervised Environment Design »
Michael Dennis · Natasha Jaques · Eugene Vinitsky · Alexandre Bayen · Stuart Russell · Andrew Critch · Sergey Levine -
2020 Tutorial: (Track3) Offline Reinforcement Learning: From Algorithm Design to Practical Applications »
Sergey Levine · Aviral Kumar -
2019 : Poster and Coffee Break 2 »
Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall -
2019 : Poster Presentations »
Rahul Mehta · Andrew Lampinen · Binghong Chen · Sergio Pascual-Diaz · Jordi Grau-Moya · Aldo Faisal · Jonathan Tompson · Yiren Lu · Khimya Khetarpal · Martin Klissarov · Pierre-Luc Bacon · Doina Precup · Thanard Kurutach · Aviv Tamar · Pieter Abbeel · Jinke He · Maximilian Igl · Shimon Whiteson · Wendelin Boehmer · Raphaël Marinier · Olivier Pietquin · Karol Hausman · Sergey Levine · Chelsea Finn · Tianhe Yu · Lisa Lee · Benjamin Eysenbach · Emilio Parisotto · Eric Xing · Ruslan Salakhutdinov · Hongyu Ren · Anima Anandkumar · Deepak Pathak · Christopher Lu · Trevor Darrell · Alexei Efros · Phillip Isola · Feng Liu · Bo Han · Gang Niu · Masashi Sugiyama · Saurabh Kumar · Janith Petangoda · Johan Ferret · James McClelland · Kara Liu · Animesh Garg · Robert Lange -
2019 : Poster Session »
Matthia Sabatelli · Adam Stooke · Amir Abdi · Paulo Rauber · Leonard Adolphs · Ian Osband · Hardik Meisheri · Karol Kurach · Johannes Ackermann · Matt Benatan · GUO ZHANG · Chen Tessler · Dinghan Shen · Mikayel Samvelyan · Riashat Islam · Murtaza Dalal · Luke Harries · Andrey Kurenkov · Konrad Żołna · Sudeep Dasari · Kristian Hartikainen · Ofir Nachum · Kimin Lee · Markus Holzleitner · Vu Nguyen · Francis Song · Christopher Grimm · Felipe Leno da Silva · Yuping Luo · Yifan Wu · Alex Lee · Thomas Paine · Wei-Yang Qu · Daniel Graves · Yannis Flet-Berliac · Yunhao Tang · Suraj Nair · Matthew Hausknecht · Akhil Bagaria · Simon Schmitt · Bowen Baker · Paavo Parmas · Benjamin Eysenbach · Lisa Lee · Siyu Lin · Daniel Seita · Abhishek Gupta · Riley Simmons-Edler · Yijie Guo · Kevin Corder · Vikash Kumar · Scott Fujimoto · Adam Lerer · Ignasi Clavera Gilaberte · Nicholas Rhinehart · Ashvin Nair · Ge Yang · Lingxiao Wang · Sungryull Sohn · J. Fernando Hernandez-Garcia · Xian Yeow Lee · Rupesh Srivastava · Khimya Khetarpal · Chenjun Xiao · Luckeciano Carvalho Melo · Rishabh Agarwal · Tianhe Yu · Glen Berseth · Devendra Singh Chaplot · Jie Tang · Anirudh Srinivasan · Tharun Kumar Reddy Medini · Aaron Havens · Misha Laskin · Asier Mujika · Rohan Saphal · Joseph Marino · Alex Ray · Joshua Achiam · Ajay Mandlekar · Zhuang Liu · Danijar Hafner · Zhiwen Tang · Ted Xiao · Michael Walton · Jeff Druce · Ferran Alet · Zhang-Wei Hong · Stephanie Chan · Anusha Nagabandi · Hao Liu · Hao Sun · Ge Liu · Dinesh Jayaraman · John Co-Reyes · Sophia Sanborn -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen (Vincent) Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 : Poster Session »
Ethan Harris · Tom White · Oh Hyeon Choung · Takashi Shinozaki · Dipan Pal · Katherine L. Hermann · Judy Borowski · Camilo Fosco · Chaz Firestone · Vijay Veerabadran · Benjamin Lahner · Chaitanya Ryali · Fenil Doshi · Pulkit Singh · Sharon Zhou · Michel Besserve · Michael Chang · Anelise Newman · Mahesan Niranjan · Jonathon Hare · Daniela Mihai · Marios Savvides · Simon Kornblith · Christina M Funke · Aude Oliva · Virginia de Sa · Dmitry Krotov · Colin Conwell · George Alvarez · Alex Kolchinski · Shengjia Zhao · Mitchell Gordon · Michael Bernstein · Stefano Ermon · Arash Mehrjou · Bernhard Schölkopf · John Co-Reyes · Michael Janner · Jiajun Wu · Josh Tenenbaum · Sergey Levine · Yalda Mohsenzadeh · Zhenglong Zhou -
2019 : Coffee/Poster session 1 »
Shiro Takagi · Khurram Javed · Johanna Sommer · Amr Sharaf · Pierluca D'Oro · Ying Wei · Sivan Doveh · Colin White · Santiago Gonzalez · Cuong Nguyen · Mao Li · Tianhe Yu · Tiago Ramalho · Masahiro Nomura · Ahsan Alvi · Jean-Francois Ton · W. Ronny Huang · Jessica Lee · Sebastian Flennerhag · Michael Zhang · Abram Friesen · Paul Blomstedt · Alina Dubatovka · Sergey Bartunov · Subin Yi · Iaroslav Shcherbatyi · Christian Simon · Zeyuan Shang · David MacLeod · Lu Liu · Liam Fowl · Diego Mesquita · Deirdre Quillen -
2019 Workshop: Learning with Rich Experience: Integration of Learning Paradigms »
Zhiting Hu · Andrew Wilson · Chelsea Finn · Lisa Lee · Taylor Berg-Kirkpatrick · Ruslan Salakhutdinov · Eric Xing -
2019 Poster: Wasserstein Dependency Measure for Representation Learning »
Sherjil Ozair · Corey Lynch · Yoshua Bengio · Aaron van den Oord · Sergey Levine · Pierre Sermanet -
2019 Poster: Planning with Goal-Conditioned Policies »
Soroush Nasiriany · Vitchyr Pong · Steven Lin · Sergey Levine -
2019 Poster: Search on the Replay Buffer: Bridging Planning and Reinforcement Learning »
Benjamin Eysenbach · Russ Salakhutdinov · Sergey Levine -
2019 Poster: MCP: Learning Composable Hierarchical Control with Multiplicative Compositional Policies »
Xue Bin Peng · Michael Chang · Grace Zhang · Pieter Abbeel · Sergey Levine -
2019 Poster: Meta-Inverse Reinforcement Learning with Probabilistic Context Variables »
Lantao Yu · Tianhe Yu · Chelsea Finn · Stefano Ermon -
2019 Poster: Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction »
Aviral Kumar · Justin Fu · George Tucker · Sergey Levine -
2019 Poster: Unsupervised Curricula for Visual Meta-Reinforcement Learning »
Allan Jabri · Kyle Hsu · Abhishek Gupta · Benjamin Eysenbach · Sergey Levine · Chelsea Finn -
2019 Poster: Language as an Abstraction for Hierarchical Deep Reinforcement Learning »
YiDing Jiang · Shixiang (Shane) Gu · Kevin Murphy · Chelsea Finn -
2019 Poster: Compositional Plan Vectors »
Coline Devin · Daniel Geng · Pieter Abbeel · Trevor Darrell · Sergey Levine -
2019 Spotlight: Unsupervised Curricula for Visual Meta-Reinforcement Learning »
Allan Jabri · Kyle Hsu · Abhishek Gupta · Benjamin Eysenbach · Sergey Levine · Chelsea Finn -
2019 Poster: Causal Confusion in Imitation Learning »
Pim de Haan · Dinesh Jayaraman · Sergey Levine -
2019 Poster: Meta-Learning with Implicit Gradients »
Aravind Rajeswaran · Chelsea Finn · Sham Kakade · Sergey Levine -
2019 Poster: When to Trust Your Model: Model-Based Policy Optimization »
Michael Janner · Justin Fu · Marvin Zhang · Sergey Levine -
2019 Poster: Guided Meta-Policy Search »
Russell Mendonca · Abhishek Gupta · Rosen Kralev · Pieter Abbeel · Sergey Levine · Chelsea Finn -
2019 Spotlight: Guided Meta-Policy Search »
Russell Mendonca · Abhishek Gupta · Rosen Kralev · Pieter Abbeel · Sergey Levine · Chelsea Finn -
2019 Oral: Causal Confusion in Imitation Learning »
Pim de Haan · Dinesh Jayaraman · Sergey Levine -
2018 : Meta-Learning to Follow Instructions, Examples, and Demonstrations »
Sergey Levine -
2018 : Spotlight Talks I »
Juan Leni · Michael Spranger · Ben Bogin · Shane Steinert-Threlkeld · Nicholas Tomlin · Fushan Li · Michael Noukhovitch · Tushar Jain · Jason Lee · Yen-Ling Kuo · Josefina Correa · Karol Hausman -
2018 : TBA 2 »
Sergey Levine -
2018 : Control as Inference and Soft Deep RL (Sergey Levine) »
Sergey Levine -
2018 : TBC 9 »
Sergey Levine -
2018 Poster: Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models »
Kurtland Chua · Roberto Calandra · Rowan McAllister · Sergey Levine -
2018 Spotlight: Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models »
Kurtland Chua · Roberto Calandra · Rowan McAllister · Sergey Levine -
2018 Poster: Probabilistic Model-Agnostic Meta-Learning »
Chelsea Finn · Kelvin Xu · Sergey Levine -
2018 Poster: Meta-Reinforcement Learning of Structured Exploration Strategies »
Abhishek Gupta · Russell Mendonca · YuXuan Liu · Pieter Abbeel · Sergey Levine -
2018 Poster: Visual Reinforcement Learning with Imagined Goals »
Ashvin Nair · Vitchyr Pong · Murtaza Dalal · Shikhar Bahl · Steven Lin · Sergey Levine -
2018 Spotlight: Visual Reinforcement Learning with Imagined Goals »
Ashvin Nair · Vitchyr Pong · Murtaza Dalal · Shikhar Bahl · Steven Lin · Sergey Levine -
2018 Spotlight: Meta-Reinforcement Learning of Structured Exploration Strategies »
Abhishek Gupta · Russell Mendonca · YuXuan Liu · Pieter Abbeel · Sergey Levine -
2018 Poster: Visual Memory for Robust Path Following »
Ashish Kumar · Saurabh Gupta · David Fouhey · Sergey Levine · Jitendra Malik -
2018 Poster: Variational Inverse Control with Events: A General Framework for Data-Driven Reward Definition »
Justin Fu · Avi Singh · Dibya Ghosh · Larry Yang · Sergey Levine -
2018 Oral: Visual Memory for Robust Path Following »
Ashish Kumar · Saurabh Gupta · David Fouhey · Sergey Levine · Jitendra Malik -
2018 Poster: Data-Efficient Hierarchical Reinforcement Learning »
Ofir Nachum · Shixiang (Shane) Gu · Honglak Lee · Sergey Levine -
2018 Poster: Where Do You Think You're Going?: Inferring Beliefs about Dynamics from Behavior »
Sid Reddy · Anca Dragan · Sergey Levine -
2017 Workshop: Workshop on Meta-Learning »
Roberto Calandra · Frank Hutter · Hugo Larochelle · Sergey Levine -
2017 Poster: Multi-Modal Imitation Learning from Unstructured Demonstrations using Generative Adversarial Nets »
Karol Hausman · Yevgen Chebotar · Stefan Schaal · Gaurav Sukhatme · Joseph Lim -
2017 Poster: EX2: Exploration with Exemplar Models for Deep Reinforcement Learning »
Justin Fu · John Co-Reyes · Sergey Levine -
2017 Spotlight: EX2: Exploration with Exemplar Models for Deep Reinforcement Learning »
Justin Fu · John Co-Reyes · Sergey Levine -
2017 Demonstration: Deep Robotic Learning using Visual Imagination and Meta-Learning »
Chelsea Finn · Frederik Ebert · Tianhe Yu · Annie Xie · Sudeep Dasari · Pieter Abbeel · Sergey Levine -
2017 Poster: Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning »
Shixiang (Shane) Gu · Timothy Lillicrap · Richard Turner · Zoubin Ghahramani · Bernhard Schölkopf · Sergey Levine -
2016 Workshop: Deep Learning for Action and Interaction »
Chelsea Finn · Raia Hadsell · David Held · Sergey Levine · Percy Liang -
2016 : Sergey Levine (University of California, Berkeley) »
Sergey Levine -
2016 Poster: Value Iteration Networks »
Aviv Tamar · Sergey Levine · Pieter Abbeel · YI WU · Garrett Thomas -
2016 Oral: Value Iteration Networks »
Aviv Tamar · Sergey Levine · Pieter Abbeel · YI WU · Garrett Thomas -
2015 : Deep Robotic Learning »
Sergey Levine -
2014 Workshop: Novel Trends and Applications in Reinforcement Learning »
Csaba Szepesvari · Marc Deisenroth · Sergey Levine · Pedro Ortega · Brian Ziebart · Emma Brunskill · Naftali Tishby · Gerhard Neumann · Daniel Lee · Sridhar Mahadevan · Pieter Abbeel · David Silver · Vicenç Gómez -
2014 Poster: Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics »
Sergey Levine · Pieter Abbeel -
2014 Spotlight: Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics »
Sergey Levine · Pieter Abbeel -
2013 Poster: Variational Policy Search via Trajectory Optimization »
Sergey Levine · Vladlen Koltun -
2010 Poster: Feature Construction for Inverse Reinforcement Learning »
Sergey Levine · Zoran Popovic · Vladlen Koltun