Timezone: »
Local feature frameworks are difficult to learn in an end-to-end fashion due to the discreteness inherent to the selection and matching of sparse keypoints. We introduce DISK (DIScrete Keypoints), a novel method that overcomes these obstacles by leveraging principles from Reinforcement Learning (RL), optimizing end-to-end for a high number of correct feature matches. Our simple yet expressive probabilistic model lets us keep the training and inference regimes close, while maintaining good enough convergence properties to reliably train from scratch. Our features can be extracted very densely while remaining discriminative, challenging commonly held assumptions about what constitutes a good keypoint, as showcased in Fig. 1, and deliver state-of-the-art results on three public benchmarks.
Author Information
Michał Tyszkiewicz (EPFL)
Pascal Fua (EPFL, Switzerland)
Eduard Trulls (Google)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Poster: DISK: Learning local features with policy gradient »
Tue. Dec 8th 05:00 -- 07:00 PM Room Poster Session 1 #452
More from the Same Authors
-
2021 : SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation »
Robin Chan · Krzysztof Lis · Svenja Uhlemeyer · Hermann Blum · Sina Honari · Roland Siegwart · Pascal Fua · Mathieu Salzmann · Matthias Rottmann -
2022 Poster: TUSK: Task-Agnostic Unsupervised Keypoints »
Yuhe Jin · Weiwei Sun · Jan Hosang · Eduard Trulls · Kwang Moo Yi -
2020 Poster: UCLID-Net: Single View Reconstruction in Object Space »
Benoit Guillard · Edoardo Remelli · Pascal Fua -
2020 Poster: MeshSDF: Differentiable Iso-Surface Extraction »
Edoardo Remelli · Artem Lukoianov · Stephan Richter · Benoit Guillard · Timur Bagautdinov · Pierre Baque · Pascal Fua -
2020 Spotlight: MeshSDF: Differentiable Iso-Surface Extraction »
Edoardo Remelli · Artem Lukoianov · Stephan Richter · Benoit Guillard · Timur Bagautdinov · Pierre Baque · Pascal Fua -
2019 Demonstration: Real Time CFD simulations with 3D Mesh Convolutional Networks »
Pierre Baque · Pascal Fua · François Fleuret -
2019 Poster: Backpropagation-Friendly Eigendecomposition »
Wei Wang · Zheng Dang · Yinlin Hu · Pascal Fua · Mathieu Salzmann -
2018 Poster: LF-Net: Learning Local Features from Images »
Yuki Ono · Eduard Trulls · Pascal Fua · Kwang Moo Yi -
2017 Poster: Learning Active Learning from Data »
Ksenia Konyushkova · Raphael Sznitman · Pascal Fua -
2015 Poster: Kullback-Leibler Proximal Variational Inference »
Mohammad Emtiyaz Khan · Pierre Baque · François Fleuret · Pascal Fua -
2013 Poster: Non-Linear Domain Adaptation with Boosting »
Carlos J Becker · Christos M Christoudias · Pascal Fua