Timezone: »
We consider the identifiability theory of probabilistic models and establish sufficient conditions under which the representations learnt by a very broad family of conditional energy-based models are unique in function space, up to a simple transformation. In our model family, the energy function is the dot-product between two feature extractors, one for the dependent variable, and one for the conditioning variable. We show that under mild conditions, the features are unique up to scaling and permutation. Our results extend recent developments in nonlinear ICA, and in fact, they lead to an important generalization of ICA models. In particular, we show that our model can be used for the estimation of the components in the framework of Independently Modulated Component Analysis (IMCA), a new generalization of nonlinear ICA that relaxes the independence assumption. A thorough empirical study show that representations learnt by our model from real-world image datasets are identifiable, and improve performance in transfer learning and semi-supervised learning tasks.
Author Information
Ilyes Khemakhem (UCL)
Ricardo Monti (Facebook Reality Labs & UCL)
Diederik Kingma (Google)
Aapo Hyvarinen (University of Helsinki)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Spotlight: ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA »
Wed. Dec 9th 03:20 -- 03:30 PM Room Orals & Spotlights: COVID/Applications/Composition
More from the Same Authors
-
2022 : On Distillation of Guided Diffusion Models »
Chenlin Meng · Ruiqi Gao · Diederik Kingma · Stefano Ermon · Jonathan Ho · Tim Salimans -
2022 : Panel Discussion »
Cheng Zhang · Mihaela van der Schaar · Ilya Shpitser · Aapo Hyvarinen · Yoshua Bengio · Bernhard Schölkopf -
2021 : Invited talk #1: Aapo Hyvärinen »
Aapo Hyvarinen -
2021 : Aapo Hyvarinen - Causal discovery by generative modelling »
Aapo Hyvarinen -
2021 Poster: Shared Independent Component Analysis for Multi-Subject Neuroimaging »
Hugo Richard · Pierre Ablin · Bertrand Thirion · Alexandre Gramfort · Aapo Hyvarinen -
2021 Poster: Disentangling Identifiable Features from Noisy Data with Structured Nonlinear ICA »
Hermanni Hälvä · Sylvain Le Corff · Luc Lehéricy · Jonathan So · Yongjie Zhu · Elisabeth Gassiat · Aapo Hyvarinen -
2021 Poster: Variational Diffusion Models »
Diederik Kingma · Tim Salimans · Ben Poole · Jonathan Ho -
2020 : Keynotes: Aapo Hyvärinen »
Aapo Hyvarinen -
2020 Poster: Modeling Shared responses in Neuroimaging Studies through MultiView ICA »
Hugo Richard · Luigi Gresele · Aapo Hyvarinen · Bertrand Thirion · Alexandre Gramfort · Pierre Ablin -
2020 Spotlight: Modeling Shared responses in Neuroimaging Studies through MultiView ICA »
Hugo Richard · Luigi Gresele · Aapo Hyvarinen · Bertrand Thirion · Alexandre Gramfort · Pierre Ablin -
2020 Poster: Relative gradient optimization of the Jacobian term in unsupervised deep learning »
Luigi Gresele · Giancarlo Fissore · Adrián Javaloy · Bernhard Schölkopf · Aapo Hyvarinen -
2020 Expo Talk Panel: Building Neural Interfaces: When Real and Artificial Neurons Meet »
Ricardo Monti · Nathalie T.H Gayraud · Jeffrey Seely · Zhuo Wang · Tugce Tasci · Rebekkah Hogan -
2018 Poster: Glow: Generative Flow with Invertible 1x1 Convolutions »
Diederik Kingma · Prafulla Dhariwal -
2017 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Andrew Wilson · Diederik Kingma · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2016 Poster: Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks »
Tim Salimans · Diederik Kingma -
2016 Oral: Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks »
Tim Salimans · Diederik Kingma -
2016 Poster: Unsupervised Feature Extraction by Time-Contrastive Learning and Nonlinear ICA »
Aapo Hyvarinen · Hiroshi Morioka -
2016 Oral: Unsupervised Feature Extraction by Time-Contrastive Learning and Nonlinear ICA »
Aapo Hyvarinen · Hiroshi Morioka -
2016 Poster: Improving Variational Autoencoders with Inverse Autoregressive Flow »
Diederik Kingma · Tim Salimans · Rafal Jozefowicz · Peter Chen · Xi Chen · Ilya Sutskever · Max Welling -
2015 : Variational Auto-Encoders and Extensions »
Diederik Kingma -
2015 Poster: Variational Dropout and the Local Reparameterization Trick »
Diederik Kingma · Tim Salimans · Max Welling -
2014 Poster: Semi-supervised Learning with Deep Generative Models »
Diederik Kingma · Shakir Mohamed · Danilo Jimenez Rezende · Max Welling -
2014 Spotlight: Semi-supervised Learning with Deep Generative Models »
Diederik Kingma · Shakir Mohamed · Danilo Jimenez Rezende · Max Welling -
2011 Poster: Structural equations and divisive normalization for energy-dependent component analysis »
Jun-ichiro Hirayama · Aapo Hyvarinen -
2011 Spotlight: Structural equations and divisive normalization for energy-dependent component analysis »
Jun-ichiro Hirayama · Aapo Hyvarinen -
2010 Poster: Regularized estimation of image statistics by Score Matching »
Diederik Kingma · Yann LeCun