Timezone: »
Learning-based photometric stereo methods predict the surface normal either in a per-pixel or an all-pixel manner. Per-pixel methods explore the inter-image intensity variation of each pixel but ignore features from the intra-image spatial domain. All-pixel methods explore the intra-image intensity variation of each input image but pay less attention to the inter-image lighting variation. In this paper, we present a Graph-based Photometric Stereo Network, which unifies per-pixel and all-pixel processings to explore both inter-image and intra-image information. For per-pixel operation, we propose the Unstructured Feature Extraction Layer to connect an arbitrary number of input image-light pairs into graph structures, and introduce Structure-aware Graph Convolution filters to balance the input data by appropriately weighting shadows and specular highlights. For all-pixel operation, we propose the Normal Regression Network to make efficient use of the intra-image spatial information for predicting a surface normal map with rich details. Experimental results on the real-world benchmark show that our method achieves excellent performance under both sparse and dense lighting distributions.
Author Information
Zhuokun Yao (Tianjin University)
Kun Li (Tianjin University)
Ying Fu (Beijing Institute of Technology)
Haofeng Hu (Tianjin University)
Boxin Shi (Peking University)
More from the Same Authors
-
2022 Poster: FOF: Learning Fourier Occupancy Field for Monocular Real-time Human Reconstruction »
Qiao Feng · Yebin Liu · Yu-Kun Lai · Jingyu Yang · Kun Li -
2023 Poster: Slow and Weak Attractor Computation Embedded in Fast and Strong E-I Balanced Neural Dynamics »
Xiaohan Lin · Liyuan Li · Boxin Shi · Tiejun Huang · Yuanyuan Mi · Si Wu -
2023 Poster: L-CAD: Language-based Colorization with Any-level Descriptions »
zheng chang · Shuchen Weng · Peixuan Zhang · Yu Li · Si Li · Boxin Shi -
2023 Poster: LuminAIRe: Illumination-Aware Conditional Image Repainting for Lighting-Realistic Generation »
Jiajun Tang · Haofeng Zhong · Shuchen Weng · Boxin Shi -
2022 Spotlight: Neural Transmitted Radiance Fields »
Chengxuan Zhu · Renjie Wan · Boxin Shi -
2022 Poster: Neural Transmitted Radiance Fields »
Chengxuan Zhu · Renjie Wan · Boxin Shi -
2021 Poster: Implicit Transformer Network for Screen Content Image Continuous Super-Resolution »
Jingyu Yang · Sheng Shen · Huanjing Yue · Kun Li -
2021 Poster: Learning to dehaze with polarization »
Chu Zhou · Minggui Teng · Yufei Han · Chao Xu · Boxin Shi -
2020 Poster: Group Contextual Encoding for 3D Point Clouds »
Xu Liu · Chengtao Li · Jian Wang · Jingbo Wang · Boxin Shi · Xiaodong He -
2020 Poster: UnModNet: Learning to Unwrap a Modulo Image for High Dynamic Range Imaging »
Chu Zhou · Hang Zhao · Jin Han · Chang Xu · Chao Xu · Tiejun Huang · Boxin Shi -
2019 Poster: Reflection Separation using a Pair of Unpolarized and Polarized Images »
Youwei Lyu · Zhaopeng Cui · Si Li · Marc Pollefeys · Boxin Shi -
2019 Spotlight: Reflection Separation using a Pair of Unpolarized and Polarized Images »
Youwei Lyu · Zhaopeng Cui · Si Li · Marc Pollefeys · Boxin Shi -
2019 Poster: Learning from Bad Data via Generation »
Tianyu Guo · Chang Xu · Boxin Shi · Chao Xu · Dacheng Tao