Timezone: »
Owing to their stability and convergence speed, extragradient methods have become a staple for solving large-scale saddle-point problems in machine learning. The basic premise of these algorithms is the use of an extrapolation step before performing an update; thanks to this exploration step, extra-gradient methods overcome many of the non-convergence issues that plague gradient descent/ascent schemes. On the other hand, as we show in this paper, running vanilla extragradient with stochastic gradients may jeopardize its convergence, even in simple bilinear models. To overcome this failure, we investigate a double stepsize extragradient algorithm where the exploration step evolves at a more aggressive time-scale compared to the update step. We show that this modification allows the method to converge even with stochastic gradients, and we derive sharp convergence rates under an error bound condition.
Author Information
Yu-Guan Hsieh (Université Grenoble Alpes / Inria)
Franck Iutzeler (Univ. Grenoble Alpes)
Jérôme Malick (CNRS and LJK)
Panayotis Mertikopoulos (CNRS (French National Center for Scientific Research) and Criteo AI Lab)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Poster: Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Variable Stepsize Scaling »
Wed. Dec 9th 05:00 -- 07:00 PM Room Poster Session 3 #813
More from the Same Authors
-
2022 : Differentially Private Federated Quantiles with the Distributed Discrete Gaussian Mechanism »
Krishna Pillutla · Yassine Laguel · Jérôme Malick · Zaid Harchaoui -
2022 : Tackling Distribution Shifts in Federated Learning with Superquantile Aggregation »
Krishna Pillutla · Yassine Laguel · Jérôme Malick · Zaid Harchaoui -
2022 : Diffusion Prior for Online Decision Making: A Case Study of Thompson Sampling »
Yu-Guan Hsieh · Shiva Kasiviswanathan · Branislav Kveton · Patrick Blöbaum -
2022 : Tackling Distribution Shifts in Federated Learning with Superquantile Aggregation »
Krishna Pillutla · Yassine Laguel · Jérôme Malick · Zaid Harchaoui -
2022 Poster: No-regret learning in games with noisy feedback: Faster rates and adaptivity via learning rate separation »
Yu-Guan Hsieh · Kimon Antonakopoulos · Volkan Cevher · Panayotis Mertikopoulos -
2022 Poster: On the convergence of policy gradient methods to Nash equilibria in general stochastic games »
Angeliki Giannou · Kyriakos Lotidis · Panayotis Mertikopoulos · Emmanouil-Vasileios Vlatakis-Gkaragkounis -
2022 Poster: Uplifting Bandits »
Yu-Guan Hsieh · Shiva Kasiviswanathan · Branislav Kveton -
2021 Poster: Fast Routing under Uncertainty: Adaptive Learning in Congestion Games via Exponential Weights »
Dong Quan Vu · Kimon Antonakopoulos · Panayotis Mertikopoulos -
2021 Poster: Sifting through the noise: Universal first-order methods for stochastic variational inequalities »
Kimon Antonakopoulos · Thomas Pethick · Ali Kavis · Panayotis Mertikopoulos · Volkan Cevher -
2021 Poster: Adaptive First-Order Methods Revisited: Convex Minimization without Lipschitz Requirements »
Kimon Antonakopoulos · Panayotis Mertikopoulos -
2021 Poster: On the Rate of Convergence of Regularized Learning in Games: From Bandits and Uncertainty to Optimism and Beyond »
Angeliki Giannou · Emmanouil-Vasileios Vlatakis-Gkaragkounis · Panayotis Mertikopoulos -
2020 Poster: No-Regret Learning and Mixed Nash Equilibria: They Do Not Mix »
Emmanouil-Vasileios Vlatakis-Gkaragkounis · Lampros Flokas · Thanasis Lianeas · Panayotis Mertikopoulos · Georgios Piliouras -
2020 Spotlight: No-Regret Learning and Mixed Nash Equilibria: They Do Not Mix »
Emmanouil-Vasileios Vlatakis-Gkaragkounis · Lampros Flokas · Thanasis Lianeas · Panayotis Mertikopoulos · Georgios Piliouras -
2020 Poster: Online Non-Convex Optimization with Imperfect Feedback »
Amélie Héliou · Matthieu Martin · Panayotis Mertikopoulos · Thibaud Rahier -
2020 Poster: On the Almost Sure Convergence of Stochastic Gradient Descent in Non-Convex Problems »
Panayotis Mertikopoulos · Nadav Hallak · Ali Kavis · Volkan Cevher -
2019 Poster: On the convergence of single-call stochastic extra-gradient methods »
Yu-Guan Hsieh · Franck Iutzeler · Jérôme Malick · Panayotis Mertikopoulos -
2019 Poster: An adaptive Mirror-Prox method for variational inequalities with singular operators »
Kimon Antonakopoulos · Veronica Belmega · Panayotis Mertikopoulos -
2018 : Poster spotlight »
Tianbao Yang · Pavel Dvurechenskii · Panayotis Mertikopoulos · Hugo Berard -
2018 Poster: Bandit Learning in Concave N-Person Games »
Mario Bravo · David Leslie · Panayotis Mertikopoulos -
2018 Poster: Learning in Games with Lossy Feedback »
Zhengyuan Zhou · Panayotis Mertikopoulos · Susan Athey · Nicholas Bambos · Peter W Glynn · Yinyu Ye -
2017 Poster: Countering Feedback Delays in Multi-Agent Learning »
Zhengyuan Zhou · Panayotis Mertikopoulos · Nicholas Bambos · Peter W Glynn · Claire Tomlin -
2017 Poster: Learning with Bandit Feedback in Potential Games »
Amélie Héliou · Johanne Cohen · Panayotis Mertikopoulos -
2017 Poster: Stochastic Mirror Descent in Variationally Coherent Optimization Problems »
Zhengyuan Zhou · Panayotis Mertikopoulos · Nicholas Bambos · Stephen Boyd · Peter W Glynn