Timezone: »
Visual processing in the retina has been studied in great detail at all levels such that a comprehensive picture of the retina's cell types and the many neural circuits they form is emerging. However, the currently best performing models of retinal function are black-box CNN models which are agnostic to such biological knowledge. In particular, these models typically neglect the role of the many inhibitory circuits involving amacrine cells and the biophysical mechanisms underlying synaptic release. Here, we present a computational model of temporal processing in the inner retina, including inhibitory feedback circuits and realistic synaptic release mechanisms. Fit to the responses of bipolar cells, the model generalized well to new stimuli including natural movie sequences, performing on par with or better than a benchmark black-box model. In pharmacology experiments, the model replicated in silico the effect of blocking specific amacrine cell populations with high fidelity, indicating that it had learned key circuit functions. Also, more in depth comparisons showed that connectivity patterns learned by the model were well matched to connectivity patterns extracted from connectomics data. Thus, our model provides a biologically interpretable data-driven account of temporal processing in the inner retina, filling the gap between purely black-box and detailed biophysical modeling.
Author Information
Cornelius Schröder (University of Tübingen)
David Klindt (University of Tübingen)
Sarah Strauss (University of Tübingen)
Katrin Franke (University of Tübingen)
Matthias Bethge (University of Tübingen)
Thomas Euler (University of Tübingen)
Philipp Berens (University of Tübingen)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Spotlight: System Identification with Biophysical Constraints: A Circuit Model of the Inner Retina »
Thu. Dec 10th 04:10 -- 04:20 PM Room Orals & Spotlights: Neuroscience
More from the Same Authors
-
2021 Spotlight: Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience »
Dominic Gonschorek · Larissa Höfling · Klaudia P. Szatko · Katrin Franke · Timm Schubert · Benjamin Dunn · Philipp Berens · David Klindt · Thomas Euler -
2021 Spotlight: How Well do Feature Visualizations Support Causal Understanding of CNN Activations? »
Roland S. Zimmermann · Judy Borowski · Robert Geirhos · Matthias Bethge · Thomas Wallis · Wieland Brendel -
2021 : Score-Based Generative Classifiers »
Roland S. Zimmermann · Lukas Schott · Yang Song · Benjamin Dunn · David Klindt -
2021 : Score-Based Generative Classifiers »
Roland S. Zimmermann · Lukas Schott · Yang Song · Benjamin Dunn · David Klindt -
2022 : Topological Ensemble Detection with Differentiable Yoking »
David Klindt · Sigurd Gaukstad · Erik Hermansen · Melvin Vaupel · Benjamin Dunn -
2022 Poster: Attraction-Repulsion Spectrum in Neighbor Embeddings »
Jan Niklas Böhm · Philipp Berens · Dmitry Kobak -
2022 Poster: Efficient identification of informative features in simulation-based inference »
Jonas Beck · Michael Deistler · Yves Bernaerts · Jakob H Macke · Philipp Berens -
2021 Poster: How Well do Feature Visualizations Support Causal Understanding of CNN Activations? »
Roland S. Zimmermann · Judy Borowski · Robert Geirhos · Matthias Bethge · Thomas Wallis · Wieland Brendel -
2021 Oral: Partial success in closing the gap between human and machine vision »
Robert Geirhos · Kantharaju Narayanappa · Benjamin Mitzkus · Tizian Thieringer · Matthias Bethge · Felix A. Wichmann · Wieland Brendel -
2021 Poster: Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience »
Dominic Gonschorek · Larissa Höfling · Klaudia P. Szatko · Katrin Franke · Timm Schubert · Benjamin Dunn · Philipp Berens · David Klindt · Thomas Euler -
2021 Poster: Partial success in closing the gap between human and machine vision »
Robert Geirhos · Kantharaju Narayanappa · Benjamin Mitzkus · Tizian Thieringer · Matthias Bethge · Felix A. Wichmann · Wieland Brendel -
2019 : Panel Discussion: What sorts of cognitive or biological (architectural) inductive biases will be crucial for developing effective artificial intelligence? »
Irina Higgins · Talia Konkle · Matthias Bethge · Nikolaus Kriegeskorte -
2019 : Perturbation-based remodeling of visual neural network representations »
Matthias Bethge -
2019 Poster: Approximate Bayesian Inference for a Mechanistic Model of Vesicle Release at a Ribbon Synapse »
Cornelius Schröder · Ben James · Leon Lagnado · Philipp Berens -
2019 Poster: Learning from brains how to regularize machines »
Zhe Li · Wieland Brendel · Edgar Walker · Erick Cobos · Taliah Muhammad · Jacob Reimer · Matthias Bethge · Fabian Sinz · Xaq Pitkow · Andreas Tolias -
2019 Poster: Accurate, reliable and fast robustness evaluation »
Wieland Brendel · Jonas Rauber · Matthias Kümmerer · Ivan Ustyuzhaninov · Matthias Bethge -
2018 : Adversarial Vision Challenge: Results of the Adversarial Vision Challenge »
Wieland Brendel · Jonas Rauber · Marcel Salathé · Alexey Kurakin · Nicolas Papernot · Sharada Mohanty · Matthias Bethge -
2018 Poster: Generalisation in humans and deep neural networks »
Robert Geirhos · Carlos R. M. Temme · Jonas Rauber · Heiko H. Schütt · Matthias Bethge · Felix A. Wichmann -
2017 : DeepArt competition »
Alexander Ecker · Leon A Gatys · Matthias Bethge -
2017 Poster: Neural system identification for large populations separating “what” and “where” »
David Klindt · Alexander Ecker · Thomas Euler · Matthias Bethge -
2016 : Matthias Bethge - Texture perception in humans and machines »
Matthias Bethge -
2015 Poster: Texture Synthesis Using Convolutional Neural Networks »
Leon A Gatys · Alexander Ecker · Matthias Bethge -
2015 Poster: Generative Image Modeling Using Spatial LSTMs »
Lucas Theis · Matthias Bethge -
2012 Poster: Training sparse natural image models with a fast Gibbs sampler of an extended state space »
Lucas Theis · Jascha Sohl-Dickstein · Matthias Bethge -
2010 Poster: Evaluating neuronal codes for inference using Fisher information »
Ralf Haefner · Matthias Bethge -
2009 Poster: Hierarchical Modeling of Local Image Features through $L_p$-Nested Symmetric Distributions »
Fabian H Sinz · Eero Simoncelli · Matthias Bethge -
2009 Poster: Neurometric function analysis of population codes »
Philipp Berens · Sebastian Gerwinn · Alexander S Ecker · Matthias Bethge -
2009 Poster: A joint maximum-entropy model for binary neural population patterns and continuous signals »
Sebastian Gerwinn · Philipp Berens · Matthias Bethge -
2009 Spotlight: A joint maximum-entropy model for binary neural population patterns and continuous signals »
Sebastian Gerwinn · Philipp Berens · Matthias Bethge -
2009 Poster: Bayesian estimation of orientation preference maps »
Jakob H Macke · Sebastian Gerwinn · Leonard White · Matthias Kaschube · Matthias Bethge -
2008 Poster: The Conjoint Effect of Divisive Normalization and Orientation Selectivity on Redundancy Reduction »
Fabian H Sinz · Matthias Bethge -
2008 Spotlight: The Conjoint Effect of Divisive Normalization and Orientation Selectivity on Redundancy Reduction »
Fabian H Sinz · Matthias Bethge -
2007 Oral: Bayesian Inference for Spiking Neuron Models with a Sparsity Prior »
Sebastian Gerwinn · Jakob H Macke · Matthias Seeger · Matthias Bethge -
2007 Spotlight: Near-Maximum Entropy Models for Binary Neural Representations of Natural Images »
Matthias Bethge · Philipp Berens -
2007 Poster: Near-Maximum Entropy Models for Binary Neural Representations of Natural Images »
Matthias Bethge · Philipp Berens -
2007 Poster: Bayesian Inference for Spiking Neuron Models with a Sparsity Prior »
Sebastian Gerwinn · Jakob H Macke · Matthias Seeger · Matthias Bethge -
2007 Poster: Receptive Fields without Spike-Triggering »
Jakob H Macke · Günther Zeck · Matthias Bethge