Timezone: »
Contemporary machine learning applications often involve classification tasks with many classes. Despite their extensive use, a precise understanding of the statistical properties and behavior of classification algorithms is still missing, especially in modern regimes where the number of classes is rather large. In this paper, we take a step in this direction by providing the first asymptotically precise analysis of linear multiclass classification. Our theoretical analysis allows us to precisely characterize how the test error varies over different training algorithms, data distributions, problem dimensions as well as number of classes, inter/intra class correlations and class priors. Specifically, our analysis reveals that the classification accuracy is highly distribution-dependent with different algorithms achieving optimal performance for different data distributions and/or training/features sizes. Unlike linear regression/binary classification, the test error in multiclass classification relies on intricate functions of the trained model (e.g., correlation between some of the trained weights) whose asymptotic behavior is difficult to characterize. This challenge is already present in simple classifiers, such as those minimizing a square loss. Our novel theoretical techniques allow us to overcome some of these challenges. The insights gained may pave the way for a precise understanding of other classification algorithms beyond those studied in this paper.
Author Information
Christos Thrampoulidis (University of British Columbia)
Samet Oymak (University of California Berkeley)
Mahdi Soltanolkotabi (University of Southern california)
More from the Same Authors
-
2022 : On the Implicit Geometry of Cross-Entropy Parameterizations for Label-Imbalanced Data »
Tina Behnia · Ganesh Ramachandra Kini · Vala Vakilian · Christos Thrampoulidis -
2022 : Generalization of Decentralized Gradient Descent with Separable Data »
Hossein Taheri · Christos Thrampoulidis -
2022 : Fast Convergence of Random Reshuffling under Interpolation and the Polyak-Łojasiewicz Condition »
Chen Fan · Christos Thrampoulidis · Mark Schmidt -
2023 Poster: BiSLS/SPS: Auto-tune Step Sizes for Stable Bi-level Optimization »
Chen Fan · Gaspard Choné-Ducasse · Mark Schmidt · Christos Thrampoulidis -
2022 Poster: Imbalance Trouble: Revisiting Neural-Collapse Geometry »
Christos Thrampoulidis · Ganesh Ramachandra Kini · Vala Vakilian · Tina Behnia -
2022 Poster: Mirror Descent Maximizes Generalized Margin and Can Be Implemented Efficiently »
Haoyuan Sun · Kwangjun Ahn · Christos Thrampoulidis · Navid Azizan -
2021 Workshop: Workshop on Deep Learning and Inverse Problems »
Reinhard Heckel · Paul Hand · Rebecca Willett · christopher metzler · Mahdi Soltanolkotabi -
2021 Poster: AutoBalance: Optimized Loss Functions for Imbalanced Data »
Mingchen Li · Xuechen Zhang · Christos Thrampoulidis · Jiasi Chen · Samet Oymak -
2021 Poster: UCB-based Algorithms for Multinomial Logistic Regression Bandits »
Sanae Amani · Christos Thrampoulidis -
2021 Poster: Label-Imbalanced and Group-Sensitive Classification under Overparameterization »
Ganesh Ramachandra Kini · Orestis Paraskevas · Samet Oymak · Christos Thrampoulidis -
2021 Poster: Benign Overfitting in Multiclass Classification: All Roads Lead to Interpolation »
Ke Wang · Vidya Muthukumar · Christos Thrampoulidis -
2020 Poster: Stage-wise Conservative Linear Bandits »
Ahmadreza Moradipari · Christos Thrampoulidis · Mahnoosh Alizadeh -
2020 Poster: Minimax Lower Bounds for Transfer Learning with Linear and One-hidden Layer Neural Networks »
Mohammadreza Mousavi Kalan · Zalan Fabian · Salman Avestimehr · Mahdi Soltanolkotabi -
2019 : Denoising via Early Stopping »
Mahdi Soltanolkotabi -
2017 Poster: Learning ReLUs via Gradient Descent »
Mahdi Soltanolkotabi -
2017 Poster: Gradient Methods for Submodular Maximization »
Hamed Hassani · Mahdi Soltanolkotabi · Amin Karbasi -
2015 Poster: Parallel Correlation Clustering on Big Graphs »
Xinghao Pan · Dimitris Papailiopoulos · Samet Oymak · Benjamin Recht · Kannan Ramchandran · Michael Jordan -
2014 Poster: Graph Clustering With Missing Data: Convex Algorithms and Analysis »
Ramya Korlakai Vinayak · Samet Oymak · Babak Hassibi