Timezone: »
Bayesian optimization provides sample-efficient global optimization for a broad range of applications, including automatic machine learning, engineering, physics, and experimental design. We introduce BoTorch, a modern programming framework for Bayesian optimization that combines Monte-Carlo (MC) acquisition functions, a novel sample average approximation optimization approach, auto-differentiation, and variance reduction techniques. BoTorch's modular design facilitates flexible specification and optimization of probabilistic models written in PyTorch, simplifying implementation of new acquisition functions. Our approach is backed by novel theoretical convergence results and made practical by a distinctive algorithmic foundation that leverages fast predictive distributions, hardware acceleration, and deterministic optimization. We also propose a novel "one-shot" formulation of the Knowledge Gradient, enabled by a combination of our theoretical and software contributions. In experiments, we demonstrate the improved sample efficiency of BoTorch relative to other popular libraries.
Author Information
Max Balandat (Facebook)
Brian Karrer (Facebook)
Daniel Jiang (Facebook)
Samuel Daulton (Facebook)
Ben Letham (Facebook)
Andrew Wilson (New York University)
I am a professor of machine learning at New York University.
Eytan Bakshy (Facebook)
More from the Same Authors
-
2020 Poster: Differentiable Expected Hypervolume Improvement for Parallel Multi-Objective Bayesian Optimization »
Samuel Daulton · Maximilian Balandat · Eytan Bakshy -
2020 Poster: Bayesian Deep Learning and a Probabilistic Perspective of Generalization »
Andrew Wilson · Pavel Izmailov -
2020 Poster: Simplifying Hamiltonian and Lagrangian Neural Networks via Explicit Constraints »
Marc Finzi · Ke Alexander Wang · Andrew Wilson -
2020 Spotlight: Simplifying Hamiltonian and Lagrangian Neural Networks via Explicit Constraints »
Marc Finzi · Ke Alexander Wang · Andrew Wilson -
2020 Poster: Learning Invariances in Neural Networks from Training Data »
Gregory Benton · Marc Finzi · Pavel Izmailov · Andrew Wilson -
2020 Poster: Re-Examining Linear Embeddings for High-Dimensional Bayesian Optimization »
Ben Letham · Roberto Calandra · Akshara Rai · Eytan Bakshy -
2020 Poster: Improving GAN Training with Probability Ratio Clipping and Sample Reweighting »
Yue Wu · Pan Zhou · Andrew Wilson · Eric Xing · Zhiting Hu -
2020 Poster: Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees »
Shali Jiang · Daniel Jiang · Maximilian Balandat · Brian Karrer · Jacob Gardner · Roman Garnett -
2020 Poster: High-Dimensional Contextual Policy Search with Unknown Context Rewards using Bayesian Optimization »
Qing Feng · Ben Letham · Hongzi Mao · Eytan Bakshy -
2020 Spotlight: High-Dimensional Contextual Policy Search with Unknown Context Rewards using Bayesian Optimization »
Qing Feng · Ben Letham · Hongzi Mao · Eytan Bakshy -
2020 Poster: Why Normalizing Flows Fail to Detect Out-of-Distribution Data »
Polina Kirichenko · Pavel Izmailov · Andrew Wilson -
2019 Workshop: Learning with Rich Experience: Integration of Learning Paradigms »
Zhiting Hu · Andrew Wilson · Chelsea Finn · Lisa Lee · Taylor Berg-Kirkpatrick · Ruslan Salakhutdinov · Eric Xing -
2019 Poster: Exact Gaussian Processes on a Million Data Points »
Ke Alexander Wang · Geoff Pleiss · Jacob Gardner · Stephen Tyree · Kilian Weinberger · Andrew Gordon Wilson -
2019 Poster: Function-Space Distributions over Kernels »
Gregory Benton · Wesley J Maddox · Jayson Salkey · Julio Albinati · Andrew Gordon Wilson -
2019 Poster: A Simple Baseline for Bayesian Uncertainty in Deep Learning »
Wesley J Maddox · Pavel Izmailov · Timur Garipov · Dmitry Vetrov · Andrew Gordon Wilson -
2018 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2018 Poster: Scaling Gaussian Process Regression with Derivatives »
David Eriksson · Kun Dong · Eric Lee · David Bindel · Andrew Wilson -
2018 Poster: GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration »
Jacob Gardner · Geoff Pleiss · Kilian Weinberger · David Bindel · Andrew Wilson -
2018 Spotlight: GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration »
Jacob Gardner · Geoff Pleiss · Kilian Weinberger · David Bindel · Andrew Wilson -
2018 Poster: Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs »
Timur Garipov · Pavel Izmailov · Dmitrii Podoprikhin · Dmitry Vetrov · Andrew Wilson -
2018 Spotlight: Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs »
Timur Garipov · Pavel Izmailov · Dmitrii Podoprikhin · Dmitry Vetrov · Andrew Wilson -
2017 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Andrew Wilson · Diederik Kingma · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2017 Symposium: Interpretable Machine Learning »
Andrew Wilson · Jason Yosinski · Patrice Simard · Rich Caruana · William Herlands -
2017 Poster: Bayesian GAN »
Yunus Saatci · Andrew Wilson -
2017 Spotlight: Bayesian GANs »
Yunus Saatci · Andrew Wilson -
2017 Poster: Bayesian Optimization with Gradients »
Jian Wu · Matthias Poloczek · Andrew Wilson · Peter Frazier -
2017 Poster: Scalable Log Determinants for Gaussian Process Kernel Learning »
Kun Dong · David Eriksson · Hannes Nickisch · David Bindel · Andrew Wilson -
2017 Oral: Bayesian Optimization with Gradients »
Jian Wu · Matthias Poloczek · Andrew Wilson · Peter Frazier -
2017 Poster: Scalable Levy Process Priors for Spectral Kernel Learning »
Phillip A Jang · Andrew Loeb · Matthew Davidow · Andrew Wilson -
2016 Workshop: Interpretable Machine Learning for Complex Systems »
Andrew Wilson · Been Kim · William Herlands -
2016 Poster: Stochastic Variational Deep Kernel Learning »
Andrew Wilson · Zhiting Hu · Russ Salakhutdinov · Eric Xing -
2015 Workshop: Nonparametric Methods for Large Scale Representation Learning »
Andrew G Wilson · Alexander Smola · Eric Xing -
2015 Poster: The Human Kernel »
Andrew Wilson · Christoph Dann · Chris Lucas · Eric Xing -
2015 Spotlight: The Human Kernel »
Andrew Wilson · Christoph Dann · Chris Lucas · Eric Xing -
2014 Workshop: Modern Nonparametrics 3: Automating the Learning Pipeline »
Eric Xing · Mladen Kolar · Arthur Gretton · Samory Kpotufe · Han Liu · Zoltán Szabó · Alan L Yuille · Andrew G Wilson · Ryan Tibshirani · Sasha Rakhlin · Damian Kozbur · Bharath Sriperumbudur · David Lopez-Paz · Kirthevasan Kandasamy · Francesco Orabona · Andreas Damianou · Wacha Bounliphone · Yanshuai Cao · Arijit Das · Yingzhen Yang · Giulia DeSalvo · Dmitry Storcheus · Roberto Valerio -
2014 Poster: Fast Kernel Learning for Multidimensional Pattern Extrapolation »
Andrew Wilson · Elad Gilboa · John P Cunningham · Arye Nehorai -
2010 Spotlight: Copula Processes »
Andrew Wilson · Zoubin Ghahramani -
2010 Poster: Copula Processes »
Andrew Wilson · Zoubin Ghahramani