Timezone: »

 
Oral
Multiscale Deep Equilibrium Models
Shaojie Bai · Vladlen Koltun · J. Zico Kolter

Tue Dec 08 06:00 AM -- 06:15 AM (PST) @ Orals & Spotlights: Deep Learning

We propose a new class of implicit networks, the multiscale deep equilibrium model (MDEQ), suited to large-scale and highly hierarchical pattern recognition domains. An MDEQ directly solves for and backpropagates through the equilibrium points of multiple feature resolutions simultaneously, using implicit differentiation to avoid storing intermediate states (and thus requiring only O(1) memory consumption). These simultaneously-learned multi-resolution features allow us to train a single model on a diverse set of tasks and loss functions, such as using a single MDEQ to perform both image classification and semantic segmentation. We illustrate the effectiveness of this approach on two large-scale vision tasks: ImageNet classification and semantic segmentation on high-resolution images from the Cityscapes dataset. In both settings, MDEQs are able to match or exceed the performance of recent competitive computer vision models: the first time such performance and scale have been achieved by an implicit deep learning approach. The code and pre-trained models are at https://github.com/locuslab/mdeq.

Author Information

Shaojie Bai (Carnegie Mellon University)
Vladlen Koltun (Intel Labs)
J. Zico Kolter (Carnegie Mellon University / Bosch Center for AI)

Zico Kolter is an Assistant Professor in the School of Computer Science at Carnegie Mellon University, and also serves as Chief Scientist of AI Research for the Bosch Center for Artificial Intelligence. His work focuses on the intersection of machine learning and optimization, with a large focus on developing more robust, explainable, and rigorous methods in deep learning. In addition, he has worked on a number of application areas, highlighted by work on sustainability and smart energy systems. He is the recipient of the DARPA Young Faculty Award, and best paper awards at KDD, IJCAI, and PESGM.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors