Timezone: »
In self-supervised learning, a system is tasked with achieving a surrogate objective by defining alternative targets on a set of unlabeled data. The aim is to build useful representations that can be used in downstream tasks, without costly manual annotation. In this work, we propose a novel self-supervised formulation of relational reasoning that allows a learner to bootstrap a signal from information implicit in unlabeled data. Training a relation head to discriminate how entities relate to themselves (intra-reasoning) and other entities (inter-reasoning), results in rich and descriptive representations in the underlying neural network backbone, which can be used in downstream tasks such as classification and image retrieval. We evaluate the proposed method following a rigorous experimental procedure, using standard datasets, protocols, and backbones. Self-supervised relational reasoning outperforms the best competitor in all conditions by an average 14% in accuracy, and the most recent state-of-the-art model by 3%. We link the effectiveness of the method to the maximization of a Bernoulli log-likelihood, which can be considered as a proxy for maximizing the mutual information, resulting in a more efficient objective with respect to the commonly used contrastive losses.
Author Information
Massimiliano Patacchiola (University of Edinburgh)
Massimiliano is a postdoctoral researcher at the University of Edinburgh in the Machine Learning group - School of Informatics. He is interested in efficient learning (few-shot, self-supervised, meta-learning), Bayesian methods (Gaussian processes), and (when in the right mood) robotics. Previously he has been an intern at Snapchat and a PhD student at the University of Plymouth.
Amos Storkey (University of Edinburgh)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Poster: Self-Supervised Relational Reasoning for Representation Learning »
Thu Dec 10th 05:00 -- 07:00 PM Room Poster Session 5
More from the Same Authors
-
2020 Poster: Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels »
Massimiliano Patacchiola · Jack Turner · Elliot Crowley · Michael O'Boyle · Amos Storkey -
2020 Spotlight: Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels »
Massimiliano Patacchiola · Jack Turner · Elliot Crowley · Michael O'Boyle · Amos Storkey -
2019 Poster: Zero-shot Knowledge Transfer via Adversarial Belief Matching »
Paul Micaelli · Amos Storkey -
2019 Spotlight: Zero-shot Knowledge Transfer via Adversarial Belief Matching »
Paul Micaelli · Amos Storkey -
2019 Poster: Learning to Learn By Self-Critique »
Antreas Antoniou · Amos Storkey -
2018 Poster: Moonshine: Distilling with Cheap Convolutions »
Elliot Crowley · Gavin Gray · Amos Storkey -
2015 Poster: Covariance-Controlled Adaptive Langevin Thermostat for Large-Scale Bayesian Sampling »
Xiaocheng Shang · Zhanxing Zhu · Benedict Leimkuhler · Amos Storkey -
2014 Workshop: NIPS Workshop on Transactional Machine Learning and E-Commerce »
David Parkes · David H Wolpert · Jennifer Wortman Vaughan · Jacob D Abernethy · Amos Storkey · Mark Reid · Ping Jin · Nihar Bhadresh Shah · Mehryar Mohri · Luis E Ortiz · Robin Hanson · Aaron Roth · Satyen Kale · Sebastien Lahaie -
2012 Poster: Continuous Relaxations for Discrete Hamiltonian Monte Carlo »
Zoubin Ghahramani · Yichuan Zhang · Charles Sutton · Amos Storkey -
2012 Spotlight: Continuous Relaxations for Discrete Hamiltonian Monte Carlo »
Zoubin Ghahramani · Yichuan Zhang · Charles Sutton · Amos Storkey -
2012 Poster: The Coloured Noise Expansion and Parameter Estimation of Diffusion Processes »
Simon Lyons · Amos Storkey · Simo Sarkka -
2011 Poster: Neuronal Adaptation for Sampling-Based Probabilistic Inference in Perceptual Bistability »
David Reichert · Peggy Series · Amos Storkey -
2011 Spotlight: Neuronal Adaptation for Sampling-Based Probabilistic Inference in Perceptual Bistability »
David Reichert · Peggy Series · Amos Storkey -
2010 Poster: Hallucinations in Charles Bonnet Syndrome Induced by Homeostasis: a Deep Boltzmann Machine Model »
David Reichert · Peggy Series · Amos Storkey -
2010 Poster: Sparse Instrumental Variables (SPIV) for Genome-Wide Studies »
Felix V Agakov · Paul McKeigue · Jon Krohn · Amos Storkey -
2007 Poster: Continuous Time Particle Filtering for fMRI »
Lawrence Murray · Amos Storkey -
2007 Poster: Modelling motion primitives and their timing in biologically executed movements »
Ben H Williams · Marc Toussaint · Amos Storkey -
2006 Poster: Learning Structural Equation Models for fMRI »
Amos Storkey · Enrico Simonotto · Heather Whalley · Stephen Lawrie · Lawrence Murray · David McGonigle -
2006 Poster: Mixture Regression for Covariate Shift »
Amos Storkey · Masashi Sugiyama