Timezone: »
Graph Neural Networks (GNN) and Variational Autoencoders (VAEs) have been widely used in modeling and generating graphs with latent factors. However there is no clear explanation of what these latent factors are and why they perform well. In this work, we present Dirichlet Graph Variational Autoencoder (DGVAE) with graph cluster memberships as latent factors. Our study connects VAEs based graph generation and balanced graph cut, and provides a new way to understand and improve the internal mechanism of VAEs based graph generation. Specifically, we first interpret the reconstruction term of DGVAE as balanced graph cut in a principled way. Furthermore, motivated by the low pass characteristics in balanced graph cut, we propose a new variant of GNN named Heatts to encode the input graph into cluster memberships. Heatts utilizes the Taylor series for fast computation of Heat kernels and has better low pass characteristics than Graph Convolutional Networks (GCN). Through experiments on graph generation and graph clustering, we demonstrate the effectiveness of our proposed framework.
Author Information
Jia Li (The Chinese University of Hong Kong)
Jianwei Yu (CUHK)
Jiajin Li (The Chinese University of Hong Kong)
Honglei Zhang (Georgia Institute of Technology)
Kangfei Zhao (The Chinese University of Hong Kong)
Yu Rong (Tencent AI Lab)
Hong Cheng (The Chinese University of Hong Kong)
Junzhou Huang (University of Texas at Arlington / Tencent AI Lab)
More from the Same Authors
-
2020 Poster: Revisiting Parameter Sharing for Automatic Neural Channel Number Search »
Jiaxing Wang · Haoli Bai · Jiaxiang Wu · Xupeng Shi · Junzhou Huang · Irwin King · Michael Lyu · Jian Cheng -
2020 Poster: RetroXpert: Decompose Retrosynthesis Prediction Like A Chemist »
Chaochao Yan · Qianggang Ding · Peilin Zhao · Shuangjia Zheng · JINYU YANG · Yang Yu · Junzhou Huang -
2020 Poster: Fast Epigraphical Projection-based Incremental Algorithms for Wasserstein Distributionally Robust Support Vector Machine »
Jiajin Li · Caihua Chen · Anthony Man-Cho So -
2020 Spotlight: RetroXpert: Decompose Retrosynthesis Prediction Like A Chemist »
Chaochao Yan · Qianggang Ding · Peilin Zhao · Shuangjia Zheng · JINYU YANG · Yang Yu · Junzhou Huang -
2020 Poster: Self-Supervised Graph Transformer on Large-Scale Molecular Data »
Yu Rong · Yatao Bian · Tingyang Xu · Weiyang Xie · Ying WEI · Wenbing Huang · Junzhou Huang -
2020 Poster: Deep Multimodal Fusion by Channel Exchanging »
Yikai Wang · Wenbing Huang · Fuchun Sun · Tingyang Xu · Yu Rong · Junzhou Huang -
2020 Poster: Adversarial Sparse Transformer for Time Series Forecasting »
Sifan Wu · Xi Xiao · Qianggang Ding · Peilin Zhao · Ying Wei · Junzhou Huang -
2019 Poster: Hyperparameter Learning via Distributional Transfer »
Ho Chung Law · Peilin Zhao · Leung Sing Chan · Junzhou Huang · Dino Sejdinovic -
2019 Poster: DTWNet: a Dynamic Time Warping Network »
Xingyu Cai · Tingyang Xu · Jinfeng Yi · Junzhou Huang · Sanguthevar Rajasekaran -
2019 Poster: NAT: Neural Architecture Transformer for Accurate and Compact Architectures »
Yong Guo · Yin Zheng · Mingkui Tan · Qi Chen · Jian Chen · Peilin Zhao · Junzhou Huang -
2019 Poster: A First-Order Algorithmic Framework for Wasserstein Distributionally Robust Logistic Regression »
Jiajin Li · SEN HUANG · Anthony Man-Cho So -
2019 Poster: Imitation Learning from Observations by Minimizing Inverse Dynamics Disagreement »
Chao Yang · Xiaojian Ma · Wenbing Huang · Fuchun Sun · Huaping Liu · Junzhou Huang · Chuang Gan -
2019 Spotlight: Imitation Learning from Observations by Minimizing Inverse Dynamics Disagreement »
Chao Yang · Xiaojian Ma · Wenbing Huang · Fuchun Sun · Huaping Liu · Junzhou Huang · Chuang Gan -
2018 Poster: Discrimination-aware Channel Pruning for Deep Neural Networks »
Zhuangwei Zhuang · Mingkui Tan · Bohan Zhuang · Jing Liu · Yong Guo · Qingyao Wu · Junzhou Huang · Jinhui Zhu -
2018 Poster: Weakly Supervised Dense Event Captioning in Videos »
Xin Wang · Wenbing Huang · Chuang Gan · Jingdong Wang · Wenwu Zhu · Junzhou Huang -
2018 Poster: Adaptive Sampling Towards Fast Graph Representation Learning »
Wenbing Huang · Tong Zhang · Yu Rong · Junzhou Huang -
2017 Poster: Efficient Optimization for Linear Dynamical Systems with Applications to Clustering and Sparse Coding »
Wenbing Huang · Mehrtash Harandi · Tong Zhang · Lijie Fan · Fuchun Sun · Junzhou Huang -
2017 Poster: Accelerated First-order Methods for Geodesically Convex Optimization on Riemannian Manifolds »
Yuanyuan Liu · Fanhua Shang · James Cheng · Hong Cheng · Licheng Jiao -
2012 Poster: Compressive Sensing MRI with Wavelet Tree Sparsity »
Chen Chen · Junzhou Huang