Timezone: »
Wasserstein \textbf{D}istributionally \textbf{R}obust \textbf{O}ptimization (DRO) is concerned with finding decisions that perform well on data that are drawn from the worst probability distribution within a Wasserstein ball centered at a certain nominal distribution. In recent years, it has been shown that various DRO formulations of learning models admit tractable convex reformulations. However, most existing works propose to solve these convex reformulations by general-purpose solvers, which are not well-suited for tackling large-scale problems. In this paper, we focus on a family of Wasserstein distributionally robust support vector machine (DRSVM) problems and propose two novel epigraphical projection-based incremental algorithms to solve them. The updates in each iteration of these algorithms can be computed in a highly efficient manner. Moreover, we show that the DRSVM problems considered in this paper satisfy a Hölderian growth condition with explicitly determined growth exponents. Consequently, we are able to establish the convergence rates of the proposed incremental algorithms. Our numerical results indicate that the proposed methods are orders of magnitude faster than the state-of-the-art, and the performance gap grows considerably as the problem size increases.
Author Information
Jiajin Li (The Chinese University of Hong Kong)
Caihua Chen (Nanjing University)
Anthony Man-Cho So (CUHK)
More from the Same Authors
-
2022 : Nonsmooth Composite Nonconvex-Concave Minimax Optimization »
Jiajin Li · Linglingzhi Zhu · Anthony Man-Cho So -
2022 : Accelerating Perturbed Stochastic Iterates in Asynchronous Lock-Free Optimization »
Kaiwen Zhou · Anthony Man-Cho So · James Cheng -
2021 Poster: Deconvolutional Networks on Graph Data »
Jia Li · Jiajin Li · Yang Liu · Jianwei Yu · Yueting Li · Hong Cheng -
2021 Poster: Modified Frank Wolfe in Probability Space »
Carson Kent · Jiajin Li · Jose Blanchet · Peter W Glynn -
2020 Poster: Dirichlet Graph Variational Autoencoder »
Jia Li · Jianwei Yu · Jiajin Li · Honglei Zhang · Kangfei Zhao · Yu Rong · Hong Cheng · Junzhou Huang -
2020 Poster: Boosting First-Order Methods by Shifting Objective: New Schemes with Faster Worst-Case Rates »
Kaiwen Zhou · Anthony Man-Cho So · James Cheng -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 Poster: A First-Order Algorithmic Framework for Wasserstein Distributionally Robust Logistic Regression »
Jiajin Li · SEN HUANG · Anthony Man-Cho So -
2013 Poster: On the Linear Convergence of the Proximal Gradient Method for Trace Norm Regularization »
Ke Hou · Zirui Zhou · Anthony Man-Cho So · Zhi-Quan Luo -
2012 Poster: Learning with Partially Absorbing Random Walks »
Xiao-Ming Wu · Zhenguo Li · Shih-Fu Chang · John Wright · Anthony Man-Cho So -
2009 Poster: Fast Graph Laplacian Regularized Kernel Learning via Semidefinite–Quadratic–Linear Programming »
Xiao-Ming Wu · Anthony Man-Cho So · Zhenguo Li · Shuo-Yen Robert Li -
2009 Spotlight: Fast Graph Laplacian Regularized Kernel Learning via Semidefinite–Quadratic–Linear Programming »
Xiao-Ming Wu · Anthony Man-Cho So · Zhenguo Li · Shuo-Yen Robert Li