Timezone: »
Poster
Global Convergence of Deep Networks with One Wide Layer Followed by Pyramidal Topology
Quynh Nguyen · Marco Mondelli
Recent works have shown that gradient descent can find a global minimum for over-parameterized neural networks where the widths of all the hidden layers scale polynomially with N (N being the number of training samples). In this paper, we prove that, for deep networks, a single layer of width N following the input layer suffices to ensure a similar guarantee. In particular, all the remaining layers are allowed to have constant widths, and form a pyramidal topology. We show an application of our result to the widely used LeCun's initialization and obtain an over-parameterization requirement for the single wide layer of order N^2.
Author Information
Quynh Nguyen (MPI-MIS)
Marco Mondelli (IST Austria)
More from the Same Authors
-
2022 : Mean-field analysis for heavy ball methods: Dropout-stability, connectivity, and global convergence »
Diyuan Wu · Vyacheslav Kungurtsev · Marco Mondelli -
2022 : Poster Session 1 »
Andrew Lowy · Thomas Bonnier · Yiling Xie · Guy Kornowski · Simon Schug · Seungyub Han · Nicolas Loizou · xinwei zhang · Laurent Condat · Tabea E. Röber · Si Yi Meng · Marco Mondelli · Runlong Zhou · Eshaan Nichani · Adrian Goldwaser · Rudrajit Das · Kayhan Behdin · Atish Agarwala · Mukul Gagrani · Gary Cheng · Tian Li · Haoran Sun · Hossein Taheri · Allen Liu · Siqi Zhang · Dmitrii Avdiukhin · Bradley Brown · Miaolan Xie · Junhyung Lyle Kim · Sharan Vaswani · Xinmeng Huang · Ganesh Ramachandra Kini · Angela Yuan · Weiqiang Zheng · Jiajin Li -
2022 Poster: The price of ignorance: how much does it cost to forget noise structure in low-rank matrix estimation? »
Jean Barbier · TianQi Hou · Marco Mondelli · Manuel Saenz -
2022 Poster: Memorization and Optimization in Deep Neural Networks with Minimum Over-parameterization »
Simone Bombari · Mohammad Hossein Amani · Marco Mondelli -
2021 Poster: When Are Solutions Connected in Deep Networks? »
Quynh Nguyen · Pierre Bréchet · Marco Mondelli -
2021 Poster: PCA Initialization for Approximate Message Passing in Rotationally Invariant Models »
Marco Mondelli · Ramji Venkataramanan -
2016 Poster: Globally Optimal Training of Generalized Polynomial Neural Networks with Nonlinear Spectral Methods »
Antoine Gautier · Quynh Nguyen · Matthias Hein