Timezone: »

Bayesian Causal Structural Learning with Zero-Inflated Poisson Bayesian Networks
Junsouk Choi · Robert Chapkin · Yang Ni

Wed Dec 09 08:20 AM -- 08:30 AM (PST) @ Orals & Spotlights: Probabilistic/Causality

Multivariate zero-inflated count data arise in a wide range of areas such as economics, social sciences, and biology. To infer causal relationships in zero-inflated count data, we propose a new zero-inflated Poisson Bayesian network (ZIPBN) model. We show that the proposed ZIPBN is identifiable with cross-sectional data. The proof is based on the well-known characterization of Markov equivalence class which is applicable to other distribution families. For causal structural learning, we introduce a fully Bayesian inference approach which exploits the parallel tempering Markov chain Monte Carlo algorithm to efficiently explore the multi-modal network space. We demonstrate the utility of the proposed ZIPBN in causal discoveries for zero-inflated count data by simulation studies with comparison to alternative Bayesian network methods. Additionally, real single-cell RNA-sequencing data with known causal relationships will be used to assess the capability of ZIPBN for discovering causal relationships in real-world problems.

Author Information

Junsouk Choi (Texas A&M University)
Robert Chapkin (Texas A&M University)
Yang Ni (Texas A&M University)

Related Events (a corresponding poster, oral, or spotlight)