Timezone: »
Discrete structures play an important role in applications
like program language modeling and software engineering.
Current approaches to predicting complex structures typically consider
autoregressive models for their tractability,
with some sacrifice in flexibility.
Energy-based models (EBMs) on the other hand offer a more flexible
and thus more powerful approach to modeling such distributions,
but require partition function estimation.
In this paper we propose \modelshort, a new algorithm for learning conditional
and unconditional EBMs for discrete structured data,
where parameter gradients are estimated using a learned sampler
that mimics local search.
We show that the energy function and sampler can be trained efficiently
via a new variational form of power iteration,
achieving a better trade-off between flexibility and tractability.
Experimentally, we show that learning local search leads to significant
improvements in challenging application domains.
Most notably, we present an energy model guided fuzzer for software testing
that achieves comparable performance
to well engineered fuzzing engines like libfuzzer.
Author Information
Hanjun Dai (Google Brain)
Rishabh Singh (Google Brain)
Bo Dai (Google Brain)
Charles Sutton (Google)
Dale Schuurmans (Google Brain & University of Alberta)
More from the Same Authors
-
2020 : Session B, Poster 20: A Framework For Differentiable Discovery Of Graph Algorithms »
Hanjun Dai -
2021 Spotlight: Combiner: Full Attention Transformer with Sparse Computation Cost »
Hongyu Ren · Hanjun Dai · Zihang Dai · Mengjiao (Sherry) Yang · Jure Leskovec · Dale Schuurmans · Bo Dai -
2021 : Type Inference as Optimization »
Eirini V. Pandi · Earl Barr · Andrew Gordon · Charles Sutton -
2021 : Offline Policy Selection under Uncertainty »
Mengjiao (Sherry) Yang · Bo Dai · Ofir Nachum · George Tucker · Dale Schuurmans -
2022 : Annealed Training for Combinatorial Optimization on Graphs »
Haoran Sun · Etash Guha · Hanjun Dai -
2023 Poster: Ordering-based Conditions for Global Convergence of Policy Gradient Methods »
Jincheng Mei · Bo Dai · Alekh Agarwal · Mohammad Ghavamzadeh · Csaba Szepesvari · Dale Schuurmans -
2023 Poster: Let the Flows Tell: Solving Graph Combinatorial Problems with GFlowNets »
Dinghuai Zhang · Hanjun Dai · Nikolay Malkin · Aaron Courville · Yoshua Bengio · Ling Pan -
2023 Poster: AdaPlanner: Adaptive Planning from Feedback with Language Models »
Haotian Sun · Yuchen Zhuang · Lingkai Kong · Bo Dai · Chao Zhang -
2023 Poster: LambdaBeam: Neural Program Search with Higher-Order Functions and Lambdas »
Kensen Shi · Hanjun Dai · Wen-Ding Li · Kevin Ellis · Charles Sutton -
2023 Poster: Learning Universal Policies via Text-Guided Video Generation »
Yilun Du · Mengjiao (Sherry) Yang · Bo Dai · Hanjun Dai · Ofir Nachum · Josh Tenenbaum · Dale Schuurmans · Pieter Abbeel -
2023 Poster: Training Chain-of-Thought via Latent-Variable Inference »
Matthew Douglas Hoffman · Du Phan · David Dohan · Pavel Sountsov · Rif A. Saurous · Sharad Vikram · Sholto Douglas · Tuan Anh Le · Charles Sutton · Aaron Parisi -
2023 Poster: DISCS: A Benchmark for Discrete Sampling »
Katayoon Goshvadi · Haoran Sun · Xingchao Liu · Azade Nova · Ruqi Zhang · Will Grathwohl · Dale Schuurmans · Hanjun Dai -
2023 Poster: Video Timeline Modeling For News Story Understanding »
Meng Liu · Mingda Zhang · Jialu Liu · Hanjun Dai · Ming-Hsuan Yang · Shuiwang Ji · Zheyun Feng · Boqing Gong -
2023 Oral: Ordering-based Conditions for Global Convergence of Policy Gradient Methods »
Jincheng Mei · Bo Dai · Alekh Agarwal · Mohammad Ghavamzadeh · Csaba Szepesvari · Dale Schuurmans -
2023 Workshop: New Frontiers in Graph Learning (GLFrontiers) »
Jiaxuan You · Rex Ying · Hanjun Dai · Ge Liu · Azalia Mirhoseini · Smita Krishnaswamy -
2022 Workshop: New Frontiers in Graph Learning »
Jiaxuan You · Marinka Zitnik · Rex Ying · Yizhou Sun · Hanjun Dai · Stefanie Jegelka -
2022 Poster: Oracle Inequalities for Model Selection in Offline Reinforcement Learning »
Jonathan N Lee · George Tucker · Ofir Nachum · Bo Dai · Emma Brunskill -
2022 Poster: Optimal Scaling for Locally Balanced Proposals in Discrete Spaces »
Haoran Sun · Hanjun Dai · Dale Schuurmans -
2022 Poster: The Role of Baselines in Policy Gradient Optimization »
Jincheng Mei · Wesley Chung · Valentin Thomas · Bo Dai · Csaba Szepesvari · Dale Schuurmans -
2022 Poster: Does GNN Pretraining Help Molecular Representation? »
Ruoxi Sun · Hanjun Dai · Adams Wei Yu -
2022 Poster: On the Global Convergence Rates of Decentralized Softmax Gradient Play in Markov Potential Games »
Runyu Zhang · Jincheng Mei · Bo Dai · Dale Schuurmans · Na Li -
2021 Poster: Combiner: Full Attention Transformer with Sparse Computation Cost »
Hongyu Ren · Hanjun Dai · Zihang Dai · Mengjiao (Sherry) Yang · Jure Leskovec · Dale Schuurmans · Bo Dai -
2021 Poster: Towards understanding retrosynthesis by energy-based models »
Ruoxi Sun · Hanjun Dai · Li Li · Steven Kearnes · Bo Dai -
2021 Poster: Learning Semantic Representations to Verify Hardware Designs »
Shobha Vasudevan · Wenjie (Joe) Jiang · David Bieber · Rishabh Singh · hamid shojaei · C. Richard Ho · Charles Sutton -
2021 Poster: A Bayesian-Symbolic Approach to Reasoning and Learning in Intuitive Physics »
Kai Xu · Akash Srivastava · Dan Gutfreund · Felix Sosa · Tomer Ullman · Josh Tenenbaum · Charles Sutton -
2021 Poster: Understanding the Effect of Stochasticity in Policy Optimization »
Jincheng Mei · Bo Dai · Chenjun Xiao · Csaba Szepesvari · Dale Schuurmans -
2021 Poster: Nearly Horizon-Free Offline Reinforcement Learning »
Tongzheng Ren · Jialian Li · Bo Dai · Simon Du · Sujay Sanghavi -
2020 : closing talk »
Augustus Odena · Charles Sutton -
2020 : Panel »
Augustus Odena · Charles Sutton · Roopsha Samanta · Xinyun Chen · Elena Glassman -
2020 : Satish Chandra Talk »
Satish Chandra · Augustus Odena · Charles Sutton -
2020 : Spotlight Session 2 »
Augustus Odena · Kensen Shi · David Bieber · Ferran Alet · Charles Sutton · Roshni Iyer -
2020 : Spotlight Session 1 »
Augustus Odena · Maxwell Nye · Disha Shrivastava · Mayank Agarwal · Vincent J Hellendoorn · Charles Sutton -
2020 : Poster Session B »
Ravichandra Addanki · Andreea-Ioana Deac · Yujia Xie · Francesco Landolfi · Antoine Prouvost · Claudius Gros · Renzo Massobrio · Abhishek Cauligi · Simon Alford · Hanjun Dai · Alberto Franzin · Nitish Kumar Panigrahy · Brandon Kates · Iddo Drori · Taoan Huang · Zhou Zhou · Marin Vlastelica · Anselm Paulus · Aaron Zweig · Minsu Cho · Haiyan Yin · Michal Lisicki · Nan Jiang · Haoran Sun -
2020 Workshop: Workshop on Computer Assisted Programming (CAP) »
Augustus Odena · Charles Sutton · Nadia Polikarpova · Josh Tenenbaum · Armando Solar-Lezama · Isil Dillig -
2020 : Contributed Talk: A Framework For Differentiable Discovery Of Graph Algorithms »
Hanjun Dai -
2020 Poster: Off-Policy Imitation Learning from Observations »
Zhuangdi Zhu · Kaixiang Lin · Bo Dai · Jiayu Zhou -
2020 Poster: Learning to Execute Programs with Instruction Pointer Attention Graph Neural Networks »
David Bieber · Charles Sutton · Hugo Larochelle · Danny Tarlow -
2020 Poster: Differentiable Top-k with Optimal Transport »
Yujia Xie · Hanjun Dai · Minshuo Chen · Bo Dai · Tuo Zhao · Hongyuan Zha · Wei Wei · Tomas Pfister -
2020 Poster: A Maximum-Entropy Approach to Off-Policy Evaluation in Average-Reward MDPs »
Nevena Lazic · Dong Yin · Mehrdad Farajtabar · Nir Levine · Dilan Gorur · Chris Harris · Dale Schuurmans -
2020 Poster: Escaping the Gravitational Pull of Softmax »
Jincheng Mei · Chenjun Xiao · Bo Dai · Lihong Li · Csaba Szepesvari · Dale Schuurmans -
2020 Oral: Escaping the Gravitational Pull of Softmax »
Jincheng Mei · Chenjun Xiao · Bo Dai · Lihong Li · Csaba Szepesvari · Dale Schuurmans -
2020 Poster: Provably Efficient Neural Estimation of Structural Equation Models: An Adversarial Approach »
Luofeng Liao · You-Lin Chen · Zhuoran Yang · Bo Dai · Mladen Kolar · Zhaoran Wang -
2020 Poster: CoinDICE: Off-Policy Confidence Interval Estimation »
Bo Dai · Ofir Nachum · Yinlam Chow · Lihong Li · Csaba Szepesvari · Dale Schuurmans -
2020 Poster: Off-Policy Evaluation via the Regularized Lagrangian »
Mengjiao (Sherry) Yang · Ofir Nachum · Bo Dai · Lihong Li · Dale Schuurmans -
2020 Spotlight: CoinDICE: Off-Policy Confidence Interval Estimation »
Bo Dai · Ofir Nachum · Yinlam Chow · Lihong Li · Csaba Szepesvari · Dale Schuurmans -
2019 : Closing Remarks »
Bo Dai · Niao He · Nicolas Le Roux · Lihong Li · Dale Schuurmans · Martha White -
2019 : Poster Spotlight 2 »
Aaron Sidford · Mengdi Wang · Lin Yang · Yinyu Ye · Zuyue Fu · Zhuoran Yang · Yongxin Chen · Zhaoran Wang · Ofir Nachum · Bo Dai · Ilya Kostrikov · Dale Schuurmans · Ziyang Tang · Yihao Feng · Lihong Li · Denny Zhou · Qiang Liu · Rodrigo Toro Icarte · Ethan Waldie · Toryn Klassen · Rick Valenzano · Margarita Castro · Simon Du · Sham Kakade · Ruosong Wang · Minshuo Chen · Tianyi Liu · Xingguo Li · Zhaoran Wang · Tuo Zhao · Philip Amortila · Doina Precup · Prakash Panangaden · Marc Bellemare -
2019 Workshop: The Optimization Foundations of Reinforcement Learning »
Bo Dai · Niao He · Nicolas Le Roux · Lihong Li · Dale Schuurmans · Martha White -
2019 : Opening Remarks »
Bo Dai · Niao He · Nicolas Le Roux · Lihong Li · Dale Schuurmans · Martha White -
2019 : Contributed Talk: Neural-Guided Symbolic Regression with Asymptotic Constraints »
Rishabh Singh -
2019 Poster: Learning Transferable Graph Exploration »
Hanjun Dai · Yujia Li · Chenglong Wang · Rishabh Singh · Po-Sen Huang · Pushmeet Kohli -
2019 Poster: Meta Architecture Search »
Albert Shaw · Wei Wei · Weiyang Liu · Le Song · Bo Dai -
2019 Poster: Exponential Family Estimation via Adversarial Dynamics Embedding »
Bo Dai · Zhen Liu · Hanjun Dai · Niao He · Arthur Gretton · Le Song · Dale Schuurmans -
2019 Poster: A Geometric Perspective on Optimal Representations for Reinforcement Learning »
Marc Bellemare · Will Dabney · Robert Dadashi · Adrien Ali Taiga · Pablo Samuel Castro · Nicolas Le Roux · Dale Schuurmans · Tor Lattimore · Clare Lyle -
2019 Poster: Energy-Inspired Models: Learning with Sampler-Induced Distributions »
Dieterich Lawson · George Tucker · Bo Dai · Rajesh Ranganath -
2019 Poster: DualDICE: Behavior-Agnostic Estimation of Discounted Stationary Distribution Corrections »
Ofir Nachum · Yinlam Chow · Bo Dai · Lihong Li -
2019 Spotlight: DualDICE: Behavior-Agnostic Estimation of Discounted Stationary Distribution Corrections »
Ofir Nachum · Yinlam Chow · Bo Dai · Lihong Li -
2019 Poster: Retrosynthesis Prediction with Conditional Graph Logic Network »
Hanjun Dai · Chengtao Li · Connor Coley · Bo Dai · Le Song -
2018 : Panel on research process »
Zachary Lipton · Charles Sutton · Finale Doshi-Velez · Hanna Wallach · Suchi Saria · Rich Caruana · Thomas Rainforth -
2018 : Charles Sutton »
Charles Sutton -
2018 Poster: Non-delusional Q-learning and value-iteration »
Tyler Lu · Dale Schuurmans · Craig Boutilier -
2018 Oral: Non-delusional Q-learning and value-iteration »
Tyler Lu · Dale Schuurmans · Craig Boutilier -
2018 Poster: Cooperative neural networks (CoNN): Exploiting prior independence structure for improved classification »
Harsh Shrivastava · Eugene Bart · Bob Price · Hanjun Dai · Bo Dai · Srinivas Aluru -
2018 Poster: Coupled Variational Bayes via Optimization Embedding »
Bo Dai · Hanjun Dai · Niao He · Weiyang Liu · Zhen Liu · Jianshu Chen · Lin Xiao · Le Song -
2018 Poster: Predictive Approximate Bayesian Computation via Saddle Points »
Yingxiang Yang · Bo Dai · Negar Kiyavash · Niao He -
2018 Poster: Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections »
Xin Zhang · Armando Solar-Lezama · Rishabh Singh -
2018 Poster: Learning towards Minimum Hyperspherical Energy »
Weiyang Liu · Rongmei Lin · Zhen Liu · Lixin Liu · Zhiding Yu · Bo Dai · Le Song -
2018 Poster: HOUDINI: Lifelong Learning as Program Synthesis »
Lazar Valkov · Dipak Chaudhari · Akash Srivastava · Charles Sutton · Swarat Chaudhuri -
2017 Poster: VEEGAN: Reducing Mode Collapse in GANs using Implicit Variational Learning »
Akash Srivastava · Lazar Valkov · Chris Russell · Michael Gutmann · Charles Sutton -
2017 Poster: Deep Hyperspherical Learning »
Weiyang Liu · Yan-Ming Zhang · Xingguo Li · Zhiding Yu · Bo Dai · Tuo Zhao · Le Song -
2017 Spotlight: Deep Hyperspherical Learning »
Weiyang Liu · Yan-Ming Zhang · Xingguo Li · Zhiding Yu · Bo Dai · Tuo Zhao · Le Song -
2016 Workshop: Towards an Artificial Intelligence for Data Science »
Charles Sutton · James Geddes · Zoubin Ghahramani · Padhraic Smyth · Chris Williams -
2015 Poster: Latent Bayesian melding for integrating individual and population models »
Mingjun Zhong · Nigel Goddard · Charles Sutton -
2015 Spotlight: Latent Bayesian melding for integrating individual and population models »
Mingjun Zhong · Nigel Goddard · Charles Sutton -
2014 Poster: Semi-Separable Hamiltonian Monte Carlo for Inference in Bayesian Hierarchical Models »
Yichuan Zhang · Charles Sutton -
2014 Poster: Signal Aggregate Constraints in Additive Factorial HMMs, with Application to Energy Disaggregation »
Mingjun Zhong · Nigel Goddard · Charles Sutton -
2014 Poster: Scalable Kernel Methods via Doubly Stochastic Gradients »
Bo Dai · Bo Xie · Niao He · Yingyu Liang · Anant Raj · Maria-Florina F Balcan · Le Song -
2013 Poster: Robust Low Rank Kernel Embeddings of Multivariate Distributions »
Le Song · Bo Dai -
2012 Poster: Continuous Relaxations for Discrete Hamiltonian Monte Carlo »
Zoubin Ghahramani · Yichuan Zhang · Charles Sutton · Amos Storkey -
2012 Spotlight: Continuous Relaxations for Discrete Hamiltonian Monte Carlo »
Zoubin Ghahramani · Yichuan Zhang · Charles Sutton · Amos Storkey -
2011 Poster: Quasi-Newton Methods for Markov Chain Monte Carlo »
Yichuan Zhang · Charles Sutton