Timezone: »
Poster
Robust Gaussian Covariance Estimation in Nearly-Matrix Multiplication Time
Jerry Li · Guanghao Ye
Robust covariance estimation is the following, well-studied problem in high dimensional statistics: given $N$ samples from a $d$-dimensional Gaussian $\mathcal{N}(\boldsymbol{0}, \Sigma)$, but where an $\varepsilon$-fraction of the samples have been arbitrarily corrupted, output $\widehat{\Sigma}$ minimizing the total variation distance between $\mathcal{N}(\boldsymbol{0}, \Sigma)$ and $\mathcal{N}(\boldsymbol{0}, \widehat{\Sigma})$.
This corresponds to learning $\Sigma$ in a natural affine-invariant variant of the Frobenius norm known as the \emph{Mahalanobis norm}.
Previous work of Cheng et al demonstrated an algorithm that, given $N = \widetilde{\Omega}(d^2 / \varepsilon^2)$ samples, achieved a near-optimal error of $O(\varepsilon \log 1 / \varepsilon)$, and moreover, their algorithm ran in time $\widetilde{O}(T(N, d) \log \kappa / \mathrm{poly} (\varepsilon))$, where $T(N, d)$ is the time it takes to multiply a $d \times N$ matrix by its transpose, and $\kappa$ is the condition number of $\Sigma$.
When $\varepsilon$ is relatively small, their polynomial dependence on $1/\varepsilon$ in the runtime is prohibitively large.
In this paper, we demonstrate a novel algorithm that achieves the same statistical guarantees, but which runs in time $\widetilde{O} (T(N, d) \log \kappa)$.
In particular, our runtime has no dependence on $\varepsilon$.
When $\Sigma$ is reasonably conditioned, our runtime matches that of the fastest algorithm for covariance estimation without outliers, up to poly-logarithmic factors, showing that we can get robustness essentially ``for free.''
Author Information
Jerry Li (Microsoft)
Guanghao Ye (University of Washington)
More from the Same Authors
-
2021 Spotlight: List-Decodable Mean Estimation in Nearly-PCA Time »
Ilias Diakonikolas · Daniel Kane · Daniel Kongsgaard · Jerry Li · Kevin Tian -
2022 : Semi-Random Sparse Recovery in Nearly-Linear Time »
Jonathan Kelner · Jerry Li · Allen Liu · Aaron Sidford · Kevin Tian -
2022 : Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions »
Sitan Chen · Sinho Chewi · Jerry Li · Yuanzhi Li · Adil Salim · Anru Zhang -
2022 : REAP: A Large-Scale Realistic Adversarial Patch Benchmark »
Nabeel Hingun · Chawin Sitawarin · Jerry Li · David Wagner -
2023 Poster: Structured Semidefinite Programming for Recovering Structured Preconditioners »
Arun Jambulapati · Jerry Li · Christopher Musco · Kirankumar Shiragur · Aaron Sidford · Kevin Tian -
2022 Poster: Robust Model Selection and Nearly-Proper Learning for GMMs »
Allen Liu · Jerry Li · Ankur Moitra -
2022 Poster: Learning (Very) Simple Generative Models Is Hard »
Sitan Chen · Jerry Li · Yuanzhi Li -
2021 Poster: Robust Regression Revisited: Acceleration and Improved Estimation Rates »
Arun Jambulapati · Jerry Li · Tselil Schramm · Kevin Tian -
2021 Poster: List-Decodable Mean Estimation in Nearly-PCA Time »
Ilias Diakonikolas · Daniel Kane · Daniel Kongsgaard · Jerry Li · Kevin Tian -
2020 Poster: Robust Sub-Gaussian Principal Component Analysis and Width-Independent Schatten Packing »
Arun Jambulapati · Jerry Li · Kevin Tian -
2020 Spotlight: Robust Sub-Gaussian Principal Component Analysis and Width-Independent Schatten Packing »
Arun Jambulapati · Jerry Li · Kevin Tian -
2020 Poster: Robust and Heavy-Tailed Mean Estimation Made Simple, via Regret Minimization »
Sam Hopkins · Jerry Li · Fred Zhang -
2020 Poster: Learning Structured Distributions From Untrusted Batches: Faster and Simpler »
Sitan Chen · Jerry Li · Ankur Moitra -
2019 Poster: Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers »
Hadi Salman · Jerry Li · Ilya Razenshteyn · Pengchuan Zhang · Huan Zhang · Sebastien Bubeck · Greg Yang -
2019 Spotlight: Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers »
Hadi Salman · Jerry Li · Ilya Razenshteyn · Pengchuan Zhang · Huan Zhang · Sebastien Bubeck · Greg Yang -
2019 Poster: Quantum Entropy Scoring for Fast Robust Mean Estimation and Improved Outlier Detection »
Yihe Dong · Samuel Hopkins · Jerry Li -
2019 Spotlight: Quantum Entropy Scoring for Fast Robust Mean Estimation and Improved Outlier Detection »
Yihe Dong · Samuel Hopkins · Jerry Li