Timezone: »
As deep learning models become tasked with more and more decisions that impact human lives, such as criminal recidivism, loan repayment, and face recognition for law enforcement, bias is becoming a growing concern. Debiasing algorithms are typically split into three paradigms: pre-processing, in-processing, and post-processing. However, in computer vision or natural language applications, it is common to start with a large generic model and then fine-tune to a specific use-case. Pre- or in-processing methods would require retraining the entire model from scratch, while post-processing methods only have black-box access to the model, so they do not leverage the weights of the trained model. Creating debiasing algorithms specifically for this fine-tuning use-case has largely been neglected.
In this work, we initiate the study of a new paradigm in debiasing research, intra-processing, which sits between in-processing and post-processing methods. Intra-processing methods are designed specifically to debias large models which have been trained on a generic dataset, and fine-tuned on a more specific task. We show how to repurpose existing in-processing methods for this use-case, and we also propose three baseline algorithms: random perturbation, layerwise optimization, and adversarial debiasing. We evaluate these methods across three popular datasets from the AIF360 toolkit, as well as on the CelebA faces dataset. Our code is available at https://github.com/abacusai/intraprocessing_debiasing.
Author Information
Yash Savani (Abacus.AI)
I am a machine learning research scientist, mathematician, and engineer with an unquenchable curiosity and a passion for learning. The pervasive patterns and puzzles of our universe fascinate me, and I strive to exercise my repertoire of math, computation, and collaboration skills to solve those puzzles that have the highest positive societal impact.
Colin White (Abacus.AI)
Naveen Sundar Govindarajulu (RealityEngines.AI)
More from the Same Authors
-
2021 : Synthetic Benchmarks for Scientific Research in Explainable Machine Learning »
Yang Liu · Sujay Khandagale · Colin White · Willie Neiswanger -
2022 : AutoML for Climate Change: A Call to Action »
Renbo Tu · Nicholas Roberts · Vishak Prasad C · Sibasis Nayak · Paarth Jain · Frederic Sala · Ganesh Ramakrishnan · Ameet Talwalkar · Willie Neiswanger · Colin White -
2022 : On the Importance of Architectures and Hyperparameters for Fairness in Face Recognition »
Samuel Dooley · Rhea Sukthanker · John Dickerson · Colin White · Frank Hutter · Micah Goldblum -
2022 : On the Importance of Architectures and Hyperparameters for Fairness in Face Recognition »
Samuel Dooley · Rhea Sukthanker · John Dickerson · Colin White · Frank Hutter · Micah Goldblum -
2022 Poster: On the Generalizability and Predictability of Recommender Systems »
Duncan McElfresh · Sujay Khandagale · Jonathan Valverde · John Dickerson · Colin White -
2022 Poster: NAS-Bench-Suite-Zero: Accelerating Research on Zero Cost Proxies »
Arjun Krishnakumar · Colin White · Arber Zela · Renbo Tu · Mahmoud Safari · Frank Hutter -
2021 Poster: How Powerful are Performance Predictors in Neural Architecture Search? »
Colin White · Arber Zela · Robin Ru · Yang Liu · Frank Hutter -
2021 Poster: NAS-Bench-x11 and the Power of Learning Curves »
Shen Yan · Colin White · Yash Savani · Frank Hutter -
2020 Poster: A Study on Encodings for Neural Architecture Search »
Colin White · Willie Neiswanger · Sam Nolen · Yash Savani -
2020 Spotlight: A Study on Encodings for Neural Architecture Search »
Colin White · Willie Neiswanger · Sam Nolen · Yash Savani -
2019 : Poster Session »
Nathalie Baracaldo · Seth Neel · Tuyen Le · Dan Philps · Suheng Tao · Sotirios Chatzis · Toyo Suzumura · Wei Wang · WENHANG BAO · Solon Barocas · Manish Raghavan · Samuel Maina · Reginald Bryant · Kush Varshney · Skyler D. Speakman · Navdeep Gill · Nicholas Schmidt · Kevin Compher · Naveen Sundar Govindarajulu · Vivek Sharma · Praneeth Vepakomma · Tristan Swedish · Jayashree Kalpathy-Cramer · Ramesh Raskar · Shihao Zheng · Mykola Pechenizkiy · Marco Schreyer · Li Ling · Chirag Nagpal · Robert Tillman · Manuela Veloso · Hanjie Chen · Xintong Wang · Michael Wellman · Matthew van Adelsberg · Ben Wood · Hans Buehler · Mahmoud Mahfouz · Antonios Alexos · Megan Shearer · Antigoni Polychroniadou · Lucia Larise Stavarache · Dmitry Efimov · Johnston P Hall · Yukun Zhang · Emily Diana · Sumitra Ganesh · Vineeth Ravi · · Swetasudha Panda · Xavier Renard · Matthew Jagielski · Yonadav Shavit · Joshua Williams · Haoran Wei · Shuang (Sophie) Zhai · Xinyi Li · Hongda Shen · Daiki Matsunaga · Jaesik Choi · Alexis Laignelet · Batuhan Guler · Jacobo Roa Vicens · Ajit Desai · Jonathan Aigrain · Robert Samoilescu -
2019 : Coffee/Poster session 1 »
Shiro Takagi · Khurram Javed · Johanna Sommer · Amr Sharaf · Pierluca D'Oro · Ying Wei · Sivan Doveh · Colin White · Santiago Gonzalez · Cuong Nguyen · Mao Li · Tianhe Yu · Tiago Ramalho · Masahiro Nomura · Ahsan Alvi · Jean-Francois Ton · W. Ronny Huang · Jessica Lee · Sebastian Flennerhag · Michael Zhang · Abram Friesen · Paul Blomstedt · Alina Dubatovka · Sergey Bartunov · Subin Yi · Iaroslav Shcherbatyi · Christian Simon · Zeyuan Shang · David MacLeod · Lu Liu · Liam Fowl · Diego Mesquita · Deirdre Quillen -
2019 : Poster Spotlights A (23 posters) »
DongHa Bahn · Xiaoran Xu · Shih-Chieh Su · Daniel Cunnington · Wonseok Hwang · Sarthak Dash · Alberto Camacho · Theodoros Salonidis · Shiyang Li · Yuyu Zhang · Habibeh Naderi · Zhe Zeng · Pasha Khosravi · Pedro Colon-Hernandez · Dimitris Diochnos · David Windridge · Robin Manhaeve · Vaishak Belle · Brendan Juba · Naveen Sundar Govindarajulu · Joe Bockhorst -
2018 Poster: Data-Driven Clustering via Parameterized Lloyd's Families »
Maria-Florina Balcan · Travis Dick · Colin White -
2018 Spotlight: Data-Driven Clustering via Parameterized Lloyd's Families »
Maria-Florina Balcan · Travis Dick · Colin White