Timezone: »
In the real world, object categories usually have a hierarchical granularity tree. Nowadays, most researchers focus on recognizing categories in a specific granularity, \emph{e.g.,} basic-level or sub(ordinate)-level. Compared with basic-level categories, the sub-level categories provide more valuable information, but its training annotations are harder to acquire. Therefore, an attractive problem is how to transfer the knowledge learned from basic-level annotations to sub-level recognition. In this paper, we introduce a new task, named Hierarchical Granularity Transfer Learning (HGTL), to recognize sub-level categories with basic-level annotations and semantic descriptions for hierarchical categories. Different from other recognition tasks, HGTL has a serious granularity gap,~\emph{i.e.,} the two granularities share an image space but have different category domains, which impede the knowledge transfer. To this end, we propose a novel Bi-granularity Semantic Preserving Network (BigSPN) to bridge the granularity gap for robust knowledge transfer. Explicitly, BigSPN constructs specific visual encoders for different granularities, which are aligned with a shared semantic interpreter via a novel subordinate entropy loss. Experiments on three benchmarks with hierarchical granularities show that BigSPN is an effective framework for Hierarchical Granularity Transfer Learning.
Author Information
Shaobo Min (USTC)
Hongtao Xie (University of Science and Technology of China)
Hantao Yao ( Institute of Automation, Chinese Academy of Sciences)
Xuran Deng (University of Science and Technology of China)
Zheng-Jun Zha (University of Science and Technology of China)
Yongdong Zhang (University of Science and Technology of China)
More from the Same Authors
-
2022 Poster: Exploring Figure-Ground Assignment Mechanism in Perceptual Organization »
Wei Zhai · Yang Cao · Jing Zhang · Zheng-Jun Zha -
2022 Poster: Bridging the Gap Between Vision Transformers and Convolutional Neural Networks on Small Datasets »
Zhiying Lu · Hongtao Xie · Chuanbin Liu · Yongdong Zhang -
2022 Poster: Stochastic Window Transformer for Image Restoration »
Jie Xiao · Xueyang Fu · Feng Wu · Zheng-Jun Zha -
2022 Poster: Rank Diminishing in Deep Neural Networks »
Ruili Feng · Kecheng Zheng · Yukun Huang · Deli Zhao · Michael Jordan · Zheng-Jun Zha -
2022 Spotlight: Lightning Talks 5B-3 »
Yanze Wu · Jie Xiao · Nianzu Yang · Jieyi Bi · Jian Yao · Yiting Chen · Qizhou Wang · Yangru Huang · Yongqiang Chen · Peixi Peng · Yuxin Hong · Xintao Wang · Feng Liu · Yining Ma · Qibing Ren · Xueyang Fu · Yonggang Zhang · Kaipeng Zeng · Jiahai Wang · GEN LI · Yonggang Zhang · Qitian Wu · Yifan Zhao · Chiyu Wang · Junchi Yan · Feng Wu · Yatao Bian · Xiaosong Jia · Ying Shan · Zhiguang Cao · Zheng-Jun Zha · Guangyao Chen · Tianjun Xiao · Han Yang · Jing Zhang · Jinbiao Chen · MA Kaili · Yonghong Tian · Junchi Yan · Chen Gong · Tong He · Binghui Xie · Yuan Sun · Francesco Locatello · Tongliang Liu · Yeow Meng Chee · David P Wipf · Tongliang Liu · Bo Han · Bo Han · Yanwei Fu · James Cheng · Zheng Zhang -
2022 Spotlight: Stochastic Window Transformer for Image Restoration »
Jie Xiao · Xueyang Fu · Feng Wu · Zheng-Jun Zha -
2021 Poster: Low-Rank Subspaces in GANs »
Jiapeng Zhu · Ruili Feng · Yujun Shen · Deli Zhao · Zheng-Jun Zha · Jingren Zhou · Qifeng Chen -
2021 Poster: Dual Progressive Prototype Network for Generalized Zero-Shot Learning »
Chaoqun Wang · Shaobo Min · Xuejin Chen · Xiaoyan Sun · Houqiang Li -
2020 Poster: Learning Semantic-aware Normalization for Generative Adversarial Networks »
Heliang Zheng · Jianlong Fu · Yanhong Zeng · Jiebo Luo · Zheng-Jun Zha -
2020 Spotlight: Learning Semantic-aware Normalization for Generative Adversarial Networks »
Heliang Zheng · Jianlong Fu · Yanhong Zeng · Jiebo Luo · Zheng-Jun Zha -
2019 Poster: Learning Deep Bilinear Transformation for Fine-grained Image Representation »
Heliang Zheng · Jianlong Fu · Zheng-Jun Zha · Jiebo Luo -
2019 Poster: Abstract Reasoning with Distracting Features »
Kecheng Zheng · Zheng-Jun Zha · Wei Wei