Timezone: »
We revisit the fundamental problem of prediction with expert advice, in a setting where the environment is benign and generates losses stochastically, but the feedback observed by the learner is subject to a moderate adversarial corruption. We prove that a variant of the classical Multiplicative Weights algorithm with decreasing step sizes achieves constant regret in this setting and performs optimally in a wide range of environments, regardless of the magnitude of the injected corruption. Our results reveal a surprising disparity between the often comparable Follow the Regularized Leader (FTRL) and Online Mirror Descent (OMD) frameworks: we show that for experts in the corrupted stochastic regime, the regret performance of OMD is in fact strictly inferior to that of FTRL.
Author Information
Idan Amir (Tel-Aviv University)
Idan Attias (Ben Gurion University)
Tomer Koren (Tel Aviv University & Google)
Yishay Mansour (Tel Aviv University / Google)
Roi Livni (Tel Aviv University)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Spotlight: Prediction with Corrupted Expert Advice »
Wed. Dec 9th 03:30 -- 03:40 PM Room Orals & Spotlights: Social/Adversarial Learning
More from the Same Authors
-
2021 Spotlight: Littlestone Classes are Privately Online Learnable »
Noah Golowich · Roi Livni -
2022 : Finding Safe Zones of Markov Decision Processes Policies »
Lee Cohen · Yishay Mansour · Michal Moshkovitz -
2023 Poster: Optimal Learners for Realizable Regression: PAC Learning and Online Learning »
Idan Attias · Steve Hanneke · Alkis Kalavasis · Amin Karbasi · Grigoris Velegkas -
2023 Poster: Multiclass Boosting: Simple and Intuitive Weak Learning Criteria »
Nataly Brukhim · Amit Daniely · Yishay Mansour · Shay Moran -
2023 Poster: Finding Safe Zones of Markov Decision Processes Policies »
Lee Cohen · Yishay Mansour · Michal Moshkovitz -
2023 Poster: Blackbox Differential Privacy for Interactive ML »
Haim Kaplan · Yishay Mansour · Shay Moran · Kobbi Nissim · Uri Stemmer -
2023 Poster: Tight Risk Bounds for Gradient Descent on Separable Data »
Matan Schliserman · Tomer Koren -
2023 Poster: Provably Efficient Personalized Multi-Objective Decision Making via Comparative Feedback »
Han Shao · Lee Cohen · Avrim Blum · Yishay Mansour · Aadirupa Saha · Matthew Walter -
2023 Poster: Information Theoretic Lower Bounds for Information Theoretic Upper Bounds »
Roi Livni -
2023 Oral: Optimal Learners for Realizable Regression: PAC Learning and Online Learning »
Idan Attias · Steve Hanneke · Alkis Kalavasis · Amin Karbasi · Grigoris Velegkas -
2022 Poster: Benign Underfitting of Stochastic Gradient Descent »
Tomer Koren · Roi Livni · Yishay Mansour · Uri Sherman -
2022 Poster: A Characterization of Semi-Supervised Adversarially Robust PAC Learnability »
Idan Attias · Steve Hanneke · Yishay Mansour -
2022 Poster: Thinking Outside the Ball: Optimal Learning with Gradient Descent for Generalized Linear Stochastic Convex Optimization »
Idan Amir · Roi Livni · Nati Srebro -
2022 Poster: Rate-Optimal Online Convex Optimization in Adaptive Linear Control »
Asaf Benjamin Cassel · Alon Peled-Cohen · Tomer Koren -
2022 Poster: Better Best of Both Worlds Bounds for Bandits with Switching Costs »
Idan Amir · Guy Azov · Tomer Koren · Roi Livni -
2021 Workshop: Learning in Presence of Strategic Behavior »
Omer Ben-Porat · Nika Haghtalab · Annie Liang · Yishay Mansour · David Parkes -
2021 Poster: Algorithmic Instabilities of Accelerated Gradient Descent »
Amit Attia · Tomer Koren -
2021 Oral: Optimal Rates for Random Order Online Optimization »
Uri Sherman · Tomer Koren · Yishay Mansour -
2021 Poster: Towards Best-of-All-Worlds Online Learning with Feedback Graphs »
Liad Erez · Tomer Koren -
2021 Poster: Never Go Full Batch (in Stochastic Convex Optimization) »
Idan Amir · Yair Carmon · Tomer Koren · Roi Livni -
2021 Poster: Littlestone Classes are Privately Online Learnable »
Noah Golowich · Roi Livni -
2021 Poster: Optimal Rates for Random Order Online Optimization »
Uri Sherman · Tomer Koren · Yishay Mansour -
2021 Poster: Asynchronous Stochastic Optimization Robust to Arbitrary Delays »
Alon Cohen · Amit Daniely · Yoel Drori · Tomer Koren · Mariano Schain -
2020 Poster: Sample Complexity of Uniform Convergence for Multicalibration »
Eliran Shabat · Lee Cohen · Yishay Mansour -
2020 Poster: Bandit Linear Control »
Asaf Benjamin Cassel · Tomer Koren -
2020 Poster: Can Implicit Bias Explain Generalization? Stochastic Convex Optimization as a Case Study »
Assaf Dauber · Meir Feder · Tomer Koren · Roi Livni -
2020 Spotlight: Bandit Linear Control »
Asaf Benjamin Cassel · Tomer Koren -
2020 Poster: Stochastic Optimization with Laggard Data Pipelines »
Naman Agarwal · Rohan Anil · Tomer Koren · Kunal Talwar · Cyril Zhang -
2020 Poster: Adversarially Robust Streaming Algorithms via Differential Privacy »
Avinatan Hassidim · Haim Kaplan · Yishay Mansour · Yossi Matias · Uri Stemmer -
2020 Poster: Private Learning of Halfspaces: Simplifying the Construction and Reducing the Sample Complexity »
Haim Kaplan · Yishay Mansour · Uri Stemmer · Eliad Tsfadia -
2020 Poster: Synthetic Data Generators -- Sequential and Private »
Olivier Bousquet · Roi Livni · Shay Moran -
2020 Poster: A Limitation of the PAC-Bayes Framework »
Roi Livni · Shay Moran -
2020 Oral: Adversarially Robust Streaming Algorithms via Differential Privacy »
Avinatan Hassidim · Haim Kaplan · Yishay Mansour · Yossi Matias · Uri Stemmer -
2019 : Poster and Coffee Break 2 »
Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall -
2019 : Private Stochastic Convex Optimization: Optimal Rates in Linear Time »
Vitaly Feldman · Tomer Koren · Kunal Talwar -
2019 : Poster Spotlight 1 »
David Brandfonbrener · Joan Bruna · Tom Zahavy · Haim Kaplan · Yishay Mansour · Nikos Karampatziakis · John Langford · Paul Mineiro · Donghwan Lee · Niao He -
2019 Poster: Online Stochastic Shortest Path with Bandit Feedback and Unknown Transition Function »
Aviv Rosenberg · Yishay Mansour -
2019 Poster: Memory Efficient Adaptive Optimization »
Rohan Anil · Vineet Gupta · Tomer Koren · Yoram Singer -
2019 Poster: Robust Bi-Tempered Logistic Loss Based on Bregman Divergences »
Ehsan Amid · Manfred K. Warmuth · Rohan Anil · Tomer Koren -
2019 Poster: Graph-based Discriminators: Sample Complexity and Expressiveness »
Roi Livni · Yishay Mansour -
2019 Spotlight: Graph-based Discriminators: Sample Complexity and Expressiveness »
Roi Livni · Yishay Mansour -
2019 Poster: Learning to Screen »
Alon Cohen · Avinatan Hassidim · Haim Kaplan · Yishay Mansour · Shay Moran -
2019 Poster: Individual Regret in Cooperative Nonstochastic Multi-Armed Bandits »
Yogev Bar-On · Yishay Mansour -
2017 Poster: Affine-Invariant Online Optimization and the Low-rank Experts Problem »
Tomer Koren · Roi Livni -
2017 Poster: Multi-Armed Bandits with Metric Movement Costs »
Tomer Koren · Roi Livni · Yishay Mansour -
2016 : Robust Learning and Inference »
Yishay Mansour -
2016 Poster: Online Pricing with Strategic and Patient Buyers »
Michal Feldman · Tomer Koren · Roi Livni · Yishay Mansour · Aviv Zohar -
2013 Poster: From Bandits to Experts: A Tale of Domination and Independence »
Noga Alon · Nicolò Cesa-Bianchi · Claudio Gentile · Yishay Mansour -
2013 Oral: From Bandits to Experts: A Tale of Domination and Independence »
Noga Alon · Nicolò Cesa-Bianchi · Claudio Gentile · Yishay Mansour