Timezone: »
Neural architecture search (NAS) enables researchers to automatically explore broad design spaces in order to improve efficiency of neural networks. This efficiency is especially important in the case of on-device deployment, where improvements in accuracy should be balanced out with computational demands of a model. In practice, performance metrics of model are computationally expensive to obtain. Previous work uses a proxy (e.g., number of operations) or a layer-wise measurement of neural network layers to estimate end-to-end hardware performance but the imprecise prediction diminishes the quality of NAS. To address this problem, we propose BRP-NAS, an efficient hardware-aware NAS enabled by an accurate performance predictor-based on graph convolutional network (GCN). What is more, we investigate prediction quality on different metrics and show that sample efficiency of the predictor-based NAS can be improved by considering binary relations of models and an iterative data selection strategy. We show that our proposed method outperforms all prior methods on NAS-Bench-101 and NAS-Bench-201, and that our predictor can consistently learn to extract useful features from the DARTS search space, improving upon the second-order baseline. Finally, to raise awareness of the fact that accurate latency estimation is not a trivial task, we release LatBench -- a latency dataset of NAS-Bench-201 models running on a broad range of devices.
Author Information
Lukasz Dudziak (Samsung AI Center Cambridge)
Thomas Chau (Samsung AI Center Cambridge)
Mohamed Abdelfattah (Samsung AI Centre Cambridge)
Royson Lee (Samsung AI Center Cambridge)
Hyeji Kim (University of Texas at Austin)
Nicholas Lane (Samsung AI Center Cambridge & University of Oxford)
More from the Same Authors
-
2021 Spotlight: FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout »
Samuel Horváth · Stefanos Laskaridis · Mario Almeida · Ilias Leontiadis · Stylianos Venieris · Nicholas Lane -
2021 : A Channel Coding Benchmark for Meta-Learning »
Rui Li · Ondrej Bohdal · Rajesh K Mishra · Hyeji Kim · Da Li · Nicholas Lane · Timothy Hospedales -
2021 Poster: FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout »
Samuel Horváth · Stefanos Laskaridis · Mario Almeida · Ilias Leontiadis · Stylianos Venieris · Nicholas Lane -
2019 Poster: Turbo Autoencoder: Deep learning based channel codes for point-to-point communication channels »
Yihan Jiang · Hyeji Kim · Himanshu Asnani · Sreeram Kannan · Sewoong Oh · Pramod Viswanath -
2018 Poster: Deepcode: Feedback Codes via Deep Learning »
Hyeji Kim · Yihan Jiang · Sreeram Kannan · Sewoong Oh · Pramod Viswanath -
2017 Poster: Discovering Potential Correlations via Hypercontractivity »
Hyeji Kim · Weihao Gao · Sreeram Kannan · Sewoong Oh · Pramod Viswanath