Timezone: »
The success of deep learning, a brain-inspired form of AI, has sparked interest in understanding how the brain could similarly learn across multiple layers of neurons. However, the majority of biologically-plausible learning algorithms have not yet reached the performance of backpropagation (BP), nor are they built on strong theoretical foundations. Here, we analyze target propagation (TP), a popular but not yet fully understood alternative to BP, from the standpoint of mathematical optimization. Our theory shows that TP is closely related to Gauss-Newton optimization and thus substantially differs from BP. Furthermore, our analysis reveals a fundamental limitation of difference target propagation (DTP), a well-known variant of TP, in the realistic scenario of non-invertible neural networks. We provide a first solution to this problem through a novel reconstruction loss that improves feedback weight training, while simultaneously introducing architectural flexibility by allowing for direct feedback connections from the output to each hidden layer. Our theory is corroborated by experimental results that show significant improvements in performance and in the alignment of forward weight updates with loss gradients, compared to DTP.
Author Information
Alexander Meulemans (ETH Zürich | University of Zürich | Institute of Neuroinformatics)
Francesco Carzaniga (Institute of Neuroinformatics, University of Zurich and ETH Zurich)
Johan Suykens (KU Leuven)
João Sacramento (ETH Zurich)
Benjamin F. Grewe (ETH Zurich)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Poster: A Theoretical Framework for Target Propagation »
Tue. Dec 8th 05:00 -- 07:00 PM Room Poster Session 1 #385
More from the Same Authors
-
2021 Spotlight: Credit Assignment in Neural Networks through Deep Feedback Control »
Alexander Meulemans · Matilde Tristany Farinha · Javier Garcia Ordonez · Pau Vilimelis Aceituno · João Sacramento · Benjamin F. Grewe -
2021 : Uncertainty estimation under model misspecification in neural network regression »
Maria Cervera · Rafael Dätwyler · Francesco D'Angelo · Hamza Keurti · Benjamin F. Grewe · Christian Henning -
2022 : Homomorphism AutoEncoder --- Learning Group Structured Representations from Observed Transitions »
Hamza Keurti · Hsiao-Ru Pan · Michel Besserve · Benjamin F. Grewe · Bernhard Schölkopf -
2022 : Meta-Learning via Classifier(-free) Guidance »
Elvis Nava · Seijin Kobayashi · Yifei Yin · Robert Katzschmann · Benjamin F. Grewe -
2023 Poster: Would I have gotten that reward? Long-term credit assignment by counterfactual contribution analysis »
Alexander Meulemans · Simon Schug · Seijin Kobayashi · nathaniel daw · Gregory Wayne -
2023 Poster: Primal-Attention: Self-attention through Asymmetric Kernel SVD in Primal Representation »
YINGYI CHEN · Qinghua Tao · Francesco Tonin · Johan Suykens -
2022 : Panel »
Tyler Hayes · Tinne Tuytelaars · Subutai Ahmad · João Sacramento · Zsolt Kira · Hava Siegelmann · Christopher Summerfield -
2022 : Homomorphism AutoEncoder --- Learning Group Structured Representations from Observed Transitions »
Hamza Keurti · Hsiao-Ru Pan · Michel Besserve · Benjamin F. Grewe · Bernhard Schölkopf -
2022 Poster: A contrastive rule for meta-learning »
Nicolas Zucchet · Simon Schug · Johannes von Oswald · Dominic Zhao · João Sacramento -
2022 Poster: On the Double Descent of Random Features Models Trained with SGD »
Fanghui Liu · Johan Suykens · Volkan Cevher -
2022 Poster: The least-control principle for local learning at equilibrium »
Alexander Meulemans · Nicolas Zucchet · Seijin Kobayashi · Johannes von Oswald · João Sacramento -
2021 Poster: Credit Assignment in Neural Networks through Deep Feedback Control »
Alexander Meulemans · Matilde Tristany Farinha · Javier Garcia Ordonez · Pau Vilimelis Aceituno · João Sacramento · Benjamin F. Grewe -
2021 Poster: Posterior Meta-Replay for Continual Learning »
Christian Henning · Maria Cervera · Francesco D'Angelo · Johannes von Oswald · Regina Traber · Benjamin Ehret · Seijin Kobayashi · Benjamin F. Grewe · João Sacramento -
2021 Poster: Learning where to learn: Gradient sparsity in meta and continual learning »
Johannes von Oswald · Dominic Zhao · Seijin Kobayashi · Simon Schug · Massimo Caccia · Nicolas Zucchet · João Sacramento -
2010 Workshop: Tensors, Kernels, and Machine Learning »
Tamara G Kolda · Vicente Malave · David F Gleich · Johan Suykens · Marco Signoretto · Andreas Argyriou -
2007 Poster: A Risk Minimization Principle for a Class of Parzen Estimators »
Kristiaan Pelckmans · Johan Suykens · Bart De Moor