Timezone: »
This paper studies the problem of learning with augmented classes (LAC), where augmented classes unobserved in the training data might emerge in the testing phase. Previous studies generally attempt to discover augmented classes by exploiting geometric properties, achieving inspiring empirical performance yet lacking theoretical understandings particularly on the generalization ability. In this paper we show that, by using unlabeled training data to approximate the potential distribution of augmented classes, an unbiased risk estimator of the testing distribution can be established for the LAC problem under mild assumptions, which paves a way to develop a sound approach with theoretical guarantees. Moreover, the proposed approach can adapt to complex changing environments where augmented classes may appear and the prior of known classes may change simultaneously. Extensive experiments confirm the effectiveness of our proposed approach.
Author Information
Yu-Jie Zhang (Nanjing University)
Peng Zhao (Nanjing University)
Lanjihong Ma (Nanjing University)
Zhi-Hua Zhou (Nanjing University)
More from the Same Authors
-
2022 Panel: Panel 4B-3: Efficient Methods for… & Understanding Deep Contrastive… »
Peng Zhao · Yuandong Tian -
2022 Spotlight: Real-Valued Backpropagation is Unsuitable for Complex-Valued Neural Networks »
Zhi-Hao Tan · Yi Xie · Yuan Jiang · Zhi-Hua Zhou -
2022 Spotlight: Lightning Talks 3A-2 »
shuwen yang · Xu Zhang · Delvin Ce Zhang · Lan-Zhe Guo · Renzhe Xu · Zhuoer Xu · Yao-Xiang Ding · Weihan Li · Xingxuan Zhang · Xi-Zhu Wu · Zhenyuan Yuan · Hady Lauw · Yu Qi · Yi-Ge Zhang · Zhihao Yang · Guanghui Zhu · Dong Li · Changhua Meng · Kun Zhou · Gang Pan · Zhi-Fan Wu · Bo Li · Minghui Zhu · Zhi-Hua Zhou · Yafeng Zhang · Yingxueff Zhang · shiwen cui · Jie-Jing Shao · Zhanguang Zhang · Zhenzhe Ying · Xiaolong Chen · Yu-Feng Li · Guojie Song · Peng Cui · Weiqiang Wang · Ming GU · Jianye Hao · Yihua Huang -
2022 Spotlight: Pre-Trained Model Reusability Evaluation for Small-Data Transfer Learning »
Yao-Xiang Ding · Xi-Zhu Wu · Kun Zhou · Zhi-Hua Zhou -
2022 Poster: Adapting to Online Label Shift with Provable Guarantees »
Yong Bai · Yu-Jie Zhang · Peng Zhao · Masashi Sugiyama · Zhi-Hua Zhou -
2022 Poster: Theoretically Provable Spiking Neural Networks »
Shao-Qun Zhang · Zhi-Hua Zhou -
2022 Poster: Pre-Trained Model Reusability Evaluation for Small-Data Transfer Learning »
Yao-Xiang Ding · Xi-Zhu Wu · Kun Zhou · Zhi-Hua Zhou -
2022 Poster: Sound and Complete Causal Identification with Latent Variables Given Local Background Knowledge »
Tian-Zuo Wang · Tian Qin · Zhi-Hua Zhou -
2022 Poster: Efficient Methods for Non-stationary Online Learning »
Peng Zhao · Yan-Feng Xie · Lijun Zhang · Zhi-Hua Zhou -
2022 Poster: Real-Valued Backpropagation is Unsuitable for Complex-Valued Neural Networks »
Zhi-Hao Tan · Yi Xie · Yuan Jiang · Zhi-Hua Zhou -
2022 Poster: Depth is More Powerful than Width with Prediction Concatenation in Deep Forest »
Shen-Huan Lyu · Yi-Xiao He · Zhi-Hua Zhou -
2021 Poster: Actively Identifying Causal Effects with Latent Variables Given Only Response Variable Observable »
Tian-Zuo Wang · Zhi-Hua Zhou -
2021 Poster: Dual Adaptivity: A Universal Algorithm for Minimizing the Adaptive Regret of Convex Functions »
Lijun Zhang · Guanghui Wang · Wei-Wei Tu · Wei Jiang · Zhi-Hua Zhou -
2020 Poster: Dynamic Regret of Convex and Smooth Functions »
Peng Zhao · Yu-Jie Zhang · Lijun Zhang · Zhi-Hua Zhou -
2020 Poster: Towards Convergence Rate Analysis of Random Forests for Classification »
Wei Gao · Zhi-Hua Zhou -
2019 Poster: Bridging Machine Learning and Logical Reasoning by Abductive Learning »
Wang-Zhou Dai · Qiuling Xu · Yang Yu · Zhi-Hua Zhou -
2019 Poster: Learning to Confuse: Generating Training Time Adversarial Data with Auto-Encoder »
Ji Feng · Qi-Zhi Cai · Zhi-Hua Zhou -
2019 Poster: A Refined Margin Distribution Analysis for Forest Representation Learning »
Shen-Huan Lyu · Liang Yang · Zhi-Hua Zhou -
2018 Poster: Adaptive Online Learning in Dynamic Environments »
Lijun Zhang · Shiyin Lu · Zhi-Hua Zhou -
2018 Poster: Multi-Layered Gradient Boosting Decision Trees »
Ji Feng · Yang Yu · Zhi-Hua Zhou -
2018 Poster: Preference Based Adaptation for Learning Objectives »
Yao-Xiang Ding · Zhi-Hua Zhou -
2018 Poster: $\ell_1$-regression with Heavy-tailed Distributions »
Lijun Zhang · Zhi-Hua Zhou -
2018 Poster: Unorganized Malicious Attacks Detection »
Ming Pang · Wei Gao · Min Tao · Zhi-Hua Zhou -
2017 Poster: Improved Dynamic Regret for Non-degenerate Functions »
Lijun Zhang · Tianbao Yang · Jinfeng Yi · Rong Jin · Zhi-Hua Zhou -
2017 Poster: Learning with Feature Evolvable Streams »
Bo-Jian Hou · Lijun Zhang · Zhi-Hua Zhou -
2017 Poster: Subset Selection under Noise »
Chao Qian · Jing-Cheng Shi · Yang Yu · Ke Tang · Zhi-Hua Zhou -
2016 Poster: What Makes Objects Similar: A Unified Multi-Metric Learning Approach »
Han-Jia Ye · De-Chuan Zhan · Xue-Min Si · Yuan Jiang · Zhi-Hua Zhou -
2015 Poster: Subset Selection by Pareto Optimization »
Chao Qian · Yang Yu · Zhi-Hua Zhou -
2014 Poster: Top Rank Optimization in Linear Time »
Nan Li · Rong Jin · Zhi-Hua Zhou -
2013 Poster: Speedup Matrix Completion with Side Information: Application to Multi-Label Learning »
Miao Xu · Rong Jin · Zhi-Hua Zhou -
2012 Poster: Nystr{ö}m Method vs Random Fourier Features: A Theoretical and Empirical Comparison »
Tianbao Yang · Yu-Feng Li · Mehrdad Mahdavi · Rong Jin · Zhi-Hua Zhou -
2010 Poster: Active Learning by Querying Informative and Representative Examples »
Sheng-Jun Huang · Rong Jin · Zhi-Hua Zhou -
2010 Poster: Multi-View Active Learning in the Non-Realizable Case »
Wei Wang · Zhi-Hua Zhou -
2006 Poster: Multi-Instance Multi-Label Learning with Application to Scene Classification »
Zhi-Hua Zhou · Min-Ling Zhang -
2006 Spotlight: Multi-Instance Multi-Label Learning with Application to Scene Classification »
Zhi-Hua Zhou · Min-Ling Zhang