Timezone: »
A hallmark of graph neural networks is their ability to distinguish the isomorphism class of their inputs. This study derives hardness results for the classification variant of graph isomorphism in the message-passing model (MPNN). MPNN encompasses the majority of graph neural networks used today and is universal when nodes are given unique features. The analysis relies on the introduced measure of communication capacity. Capacity measures how much information the nodes of a network can exchange during the forward pass and depends on the depth, message-size, global state, and width of the architecture. It is shown that the capacity of MPNN needs to grow linearly with the number of nodes so that a network can distinguish trees and quadratically for general connected graphs. The derived bounds concern both worst- and average-case behavior and apply to networks with/without unique features and adaptive architecture---they are also up to two orders of magnitude tighter than those given by simpler arguments. An empirical study involving 12 graph classification tasks and 420 networks reveals strong alignment between actual performance and theoretical predictions.
Author Information
Andreas Loukas (EPFL)
Researcher fascinated by graphs and machine learning.
More from the Same Authors
-
2021 Poster: What training reveals about neural network complexity »
Andreas Loukas · Marinos Poiitis · Stefanie Jegelka -
2021 Poster: SQALER: Scaling Question Answering by Decoupling Multi-Hop and Logical Reasoning »
Mattia Atzeni · Jasmina Bogojeska · Andreas Loukas -
2021 Poster: Partition and Code: learning how to compress graphs »
Giorgos Bouritsas · Andreas Loukas · Nikolaos Karalias · Michael Bronstein -
2020 Poster: Building powerful and equivariant graph neural networks with structural message-passing »
ClĂ©ment Vignac · Andreas Loukas · Pascal Frossard -
2020 Poster: Erdos Goes Neural: an Unsupervised Learning Framework for Combinatorial Optimization on Graphs »
Nikolaos Karalias · Andreas Loukas -
2020 Oral: Erdos Goes Neural: an Unsupervised Learning Framework for Combinatorial Optimization on Graphs »
Nikolaos Karalias · Andreas Loukas