Timezone: »
While 2D generative adversarial networks have enabled high-resolution image synthesis, they largely lack an understanding of the 3D world and the image formation process. Thus, they do not provide precise control over camera viewpoint or object pose. To address this problem, several recent approaches leverage intermediate voxel-based representations in combination with differentiable rendering. However, existing methods either produce low image resolution or fall short in disentangling camera and scene properties, e.g., the object identity may vary with the viewpoint. In this paper, we propose a generative model for radiance fields which have recently proven successful for novel view synthesis of a single scene. In contrast to voxel-based representations, radiance fields are not confined to a coarse discretization of the 3D space, yet allow for disentangling camera and scene properties while degrading gracefully in the presence of reconstruction ambiguity. By introducing a multi-scale patch-based discriminator, we demonstrate synthesis of high-resolution images while training our model from unposed 2D images alone. We systematically analyze our approach on several challenging synthetic and real-world datasets. Our experiments reveal that radiance fields are a powerful representation for generative image synthesis, leading to 3D consistent models that render with high fidelity.
Author Information
Katja Schwarz (MPI Tuebingen)
Yiyi Liao (University of Tübingen)
Michael Niemeyer (Max Planck for Intelligent Systems)
Andreas Geiger (MPI-IS and University of Tuebingen)
More from the Same Authors
-
2022 Spotlight: Lightning Talks 4B-4 »
Ziyue Jiang · Zeeshan Khan · Yuxiang Yang · Chenze Shao · Yichong Leng · Zehao Yu · Wenguan Wang · Xian Liu · Zehua Chen · Yang Feng · Qianyi Wu · James Liang · C.V. Jawahar · Junjie Yang · Zhe Su · Songyou Peng · Yufei Xu · Junliang Guo · Michael Niemeyer · Hang Zhou · Zhou Zhao · Makarand Tapaswi · Dongfang Liu · Qian Yang · Torsten Sattler · Yuanqi Du · Haohe Liu · Jing Zhang · Andreas Geiger · Yi Ren · Long Lan · Jiawei Chen · Wayne Wu · Dahua Lin · Dacheng Tao · Xu Tan · Jinglin Liu · Ziwei Liu · 振辉 叶 · Danilo Mandic · Lei He · Xiangyang Li · Tao Qin · sheng zhao · Tie-Yan Liu -
2022 Spotlight: MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface Reconstruction »
Zehao Yu · Songyou Peng · Michael Niemeyer · Torsten Sattler · Andreas Geiger -
2022 Poster: MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface Reconstruction »
Zehao Yu · Songyou Peng · Michael Niemeyer · Torsten Sattler · Andreas Geiger -
2022 Poster: VoxGRAF: Fast 3D-Aware Image Synthesis with Sparse Voxel Grids »
Katja Schwarz · Axel Sauer · Michael Niemeyer · Yiyi Liao · Andreas Geiger -
2021 Poster: On the Frequency Bias of Generative Models »
Katja Schwarz · Yiyi Liao · Andreas Geiger -
2021 Oral: Shape As Points: A Differentiable Poisson Solver »
Songyou Peng · Chiyu Jiang · Yiyi Liao · Michael Niemeyer · Marc Pollefeys · Andreas Geiger -
2021 Poster: Shape As Points: A Differentiable Poisson Solver »
Songyou Peng · Chiyu Jiang · Yiyi Liao · Michael Niemeyer · Marc Pollefeys · Andreas Geiger