Timezone: »
We consider a covariate shift problem where one has access to several different training datasets for the same learning problem and a small validation set which possibly differs from all the individual training distributions. The distribution shift is due, in part, to \emph{unobserved} features in the datasets. The objective, then, is to find the best mixture distribution over the training datasets (with only observed features) such that training a learning algorithm using this mixture has the best validation performance. Our proposed algorithm, \textsf{Mix\&Match}, combines stochastic gradient descent (SGD) with optimistic tree search and model re-use (evolving partially trained models with samples from different mixture distributions) over the space of mixtures, for this task. We prove a novel high probability bound on the final SGD iterate without relying on a global gradient norm bound, and use it to show the advantages of model re-use. Additionally, we provide simple regret guarantees for our algorithm with respect to recovering the optimal mixture, given a total budget of SGD evaluations. Finally, we validate our algorithm on two real-world datasets.
Author Information
Matthew Faw (University of Texas at Austin)
Rajat Sen (Google)
Karthikeyan Shanmugam (IBM Research, NY)
Constantine Caramanis (UT Austin)
Sanjay Shakkottai (University of Texas at Austin)
More from the Same Authors
-
2020 Poster: Active Structure Learning of Causal DAGs via Directed Clique Trees »
Chandler Squires · Sara Magliacane · Kristjan Greenewald · Dmitriy Katz · Murat Kocaoglu · Karthikeyan Shanmugam -
2020 Poster: Task-Robust Model-Agnostic Meta-Learning »
Liam Collins · Aryan Mokhtari · Sanjay Shakkottai -
2020 Poster: Causal Discovery from Soft Interventions with Unknown Targets: Characterization and Learning »
Amin Jaber · Murat Kocaoglu · Karthikeyan Shanmugam · Elias Bareinboim -
2020 Poster: Second Order Optimality in Decentralized Non-Convex Optimization via Perturbed Gradient Tracking »
Isidoros Tziotis · Constantine Caramanis · Aryan Mokhtari -
2020 Poster: Applications of Common Entropy for Causal Inference »
Murat Kocaoglu · Sanjay Shakkottai · Alexandros Dimakis · Constantine Caramanis · Sriram Vishwanath -
2020 Poster: Learning Global Transparent Models consistent with Local Contrastive Explanations »
Tejaswini Pedapati · Avinash Balakrishnan · Karthikeyan Shanmugam · Amit Dhurandhar -
2020 Poster: Finite-Sample Analysis of Contractive Stochastic Approximation Using Smooth Convex Envelopes »
Zaiwei Chen · Siva Theja Maguluri · Sanjay Shakkottai · Karthikeyan Shanmugam -
2020 Poster: Robust compressed sensing using generative models »
Ajil Jalal · Liu Liu · Alexandros Dimakis · Constantine Caramanis -
2019 Poster: Think Globally, Act Locally: A Deep Neural Network Approach to High-Dimensional Time Series Forecasting »
Rajat Sen · Hsiang-Fu Yu · Inderjit Dhillon -
2019 Poster: Differentially Private Distributed Data Summarization under Covariate Shift »
Kanthi Sarpatwar · Karthikeyan Shanmugam · Venkata Sitaramagiridharganesh Ganapavarapu · Ashish Jagmohan · Roman Vaculin -
2019 Poster: Primal-Dual Block Generalized Frank-Wolfe »
Qi Lei · JIACHENG ZHUO · Constantine Caramanis · Inderjit Dhillon · Alexandros Dimakis -
2019 Poster: Sample Efficient Active Learning of Causal Trees »
Kristjan Greenewald · Dmitriy Katz · Karthikeyan Shanmugam · Sara Magliacane · Murat Kocaoglu · Enric Boix Adsera · Guy Bresler -
2019 Poster: Blocking Bandits »
Soumya Basu · Rajat Sen · Sujay Sanghavi · Sanjay Shakkottai -
2019 Poster: Characterization and Learning of Causal Graphs with Latent Variables from Soft Interventions »
Murat Kocaoglu · Amin Jaber · Karthikeyan Shanmugam · Elias Bareinboim -
2018 Poster: Improving Simple Models with Confidence Profiles »
Amit Dhurandhar · Karthikeyan Shanmugam · Ronny Luss · Peder A Olsen -
2018 Poster: Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives »
Amit Dhurandhar · Pin-Yu Chen · Ronny Luss · Chun-Chen Tu · Paishun Ting · Karthikeyan Shanmugam · Payel Das -
2017 Poster: Experimental Design for Learning Causal Graphs with Latent Variables »
Murat Kocaoglu · Karthikeyan Shanmugam · Elias Bareinboim -
2017 Poster: Model-Powered Conditional Independence Test »
Rajat Sen · Ananda Theertha Suresh · Karthikeyan Shanmugam · Alexandros Dimakis · Sanjay Shakkottai -
2016 Poster: Fast Algorithms for Robust PCA via Gradient Descent »
Xinyang Yi · Dohyung Park · Yudong Chen · Constantine Caramanis -
2016 Poster: More Supervision, Less Computation: Statistical-Computational Tradeoffs in Weakly Supervised Learning »
Xinyang Yi · Zhaoran Wang · Zhuoran Yang · Constantine Caramanis · Han Liu -
2016 Poster: Regret of Queueing Bandits »
Subhashini Krishnasamy · Rajat Sen · Ramesh Johari · Sanjay Shakkottai -
2015 Poster: Optimal Linear Estimation under Unknown Nonlinear Transform »
Xinyang Yi · Zhaoran Wang · Constantine Caramanis · Han Liu -
2015 Poster: Learning Causal Graphs with Small Interventions »
Karthikeyan Shanmugam · Murat Kocaoglu · Alexandros Dimakis · Sriram Vishwanath -
2015 Poster: Regularized EM Algorithms: A Unified Framework and Statistical Guarantees »
Xinyang Yi · Constantine Caramanis -
2014 Poster: Sparse Polynomial Learning and Graph Sketching »
Murat Kocaoglu · Karthikeyan Shanmugam · Alexandros Dimakis · Adam Klivans -
2014 Poster: On the Information Theoretic Limits of Learning Ising Models »
Rashish Tandon · Karthikeyan Shanmugam · Pradeep Ravikumar · Alexandros Dimakis -
2014 Oral: Sparse Polynomial Learning and Graph Sketching »
Murat Kocaoglu · Karthikeyan Shanmugam · Alexandros Dimakis · Adam Klivans -
2014 Poster: Greedy Subspace Clustering »
Dohyung Park · Constantine Caramanis · Sujay Sanghavi -
2013 Poster: Memory Limited, Streaming PCA »
Ioannis Mitliagkas · Constantine Caramanis · Prateek Jain