Timezone: »

 
Poster
Domain Adaptation with Conditional Distribution Matching and Generalized Label Shift
Remi Tachet des Combes · Han Zhao · Yu-Xiang Wang · Geoffrey Gordon

Wed Dec 09 09:00 AM -- 11:00 AM (PST) @ Poster Session 3 #1008
Adversarial learning has demonstrated good performance in the unsupervised domain adaptation setting, by learning domain-invariant representations. However, recent work has shown limitations of this approach when label distributions differ between the source and target domains. In this paper, we propose a new assumption, \textit{generalized label shift} ($\glsa$), to improve robustness against mismatched label distributions. $\glsa$ states that, conditioned on the label, there exists a representation of the input that is invariant between the source and target domains. Under $\glsa$, we provide theoretical guarantees on the transfer performance of any classifier. We also devise necessary and sufficient conditions for $\glsa$ to hold, by using an estimation of the relative class weights between domains and an appropriate reweighting of samples. Our weight estimation method could be straightforwardly and generically applied in existing domain adaptation (DA) algorithms that learn domain-invariant representations, with small computational overhead. In particular, we modify three DA algorithms, JAN, DANN and CDAN, and evaluate their performance on standard and artificial DA tasks. Our algorithms outperform the base versions, with vast improvements for large label distribution mismatches. Our code is available at \url{https://tinyurl.com/y585xt6j}.

Author Information

Remi Tachet des Combes (Microsoft Research Montreal)
Han Zhao (University of Illinois at Urbana-Champaign)
Yu-Xiang Wang (UC Santa Barbara)
Geoffrey Gordon (MSR Montréal & CMU)

Dr. Gordon is an Associate Research Professor in the Department of Machine Learning at Carnegie Mellon University, and co-director of the Department's Ph. D. program. He works on multi-robot systems, statistical machine learning, game theory, and planning in probabilistic, adversarial, and general-sum domains. His previous appointments include Visiting Professor at the Stanford Computer Science Department and Principal Scientist at Burning Glass Technologies in San Diego. Dr. Gordon received his B.A. in Computer Science from Cornell University in 1991, and his Ph.D. in Computer Science from Carnegie Mellon University in 1999.

More from the Same Authors