Timezone: »
Noisy labels can impair the performance of deep neural networks. To tackle this problem, in this paper, we propose a new method for filtering label noise. Unlike most existing methods relying on the posterior probability of a noisy classifier, we focus on the much richer spatial behavior of data in the latent representational space. By leveraging the high-order topological information of data, we are able to collect most of the clean data and train a high-quality model. Theoretically we prove that this topological approach is guaranteed to collect the clean data with high probability. Empirical results show that our method outperforms the state-of-the-arts and is robust to a broad spectrum of noise types and levels.
Author Information
Pengxiang Wu (Rutgers University)
Songzhu Zheng (Stony Brook University)
Mayank Goswami (Queens College of CUNY)
Dimitris Metaxas (Rutgers University)
Chao Chen (Stony Brook University)
More from the Same Authors
-
2022 : Learning Probabilistic Topological Representations Using Discrete Morse Theory »
Xiaoling Hu · Dimitris Samaras · Chao Chen -
2022 : Learning Probabilistic Topological Representations Using Discrete Morse Theory »
Xiaoling Hu · Dimitris Samaras · Chao Chen -
2023 Competition: Foundation Model Prompting for Medical Image Classification Challenge 2023 »
Dequan Wang · Xiaosong Wang · Qian Da · DOU QI · · Shaoting Zhang · Dimitris Metaxas -
2022 Spotlight: Lightning Talks 2A-4 »
Sarthak Mittal · Richard Grumitt · Zuoyu Yan · Lihao Wang · Dongsheng Wang · Alexander Korotin · Jiangxin Sun · Ankit Gupta · Vage Egiazarian · Tengfei Ma · Yi Zhou · Yishi Xu · Albert Gu · Biwei Dai · Chunyu Wang · Yoshua Bengio · Uros Seljak · Miaoge Li · Guillaume Lajoie · Yiqun Wang · Liangcai Gao · Lingxiao Li · Jonathan Berant · Huang Hu · Xiaoqing Zheng · Zhibin Duan · Hanjiang Lai · Evgeny Burnaev · Zhi Tang · Zhi Jin · Xuanjing Huang · Chaojie Wang · Yusu Wang · Jian-Fang Hu · Bo Chen · Chao Chen · Hao Zhou · Mingyuan Zhou -
2022 Spotlight: Neural Approximation of Graph Topological Features »
Zuoyu Yan · Tengfei Ma · Liangcai Gao · Zhi Tang · Yusu Wang · Chao Chen -
2022 Poster: Neural Approximation of Graph Topological Features »
Zuoyu Yan · Tengfei Ma · Liangcai Gao · Zhi Tang · Yusu Wang · Chao Chen -
2021 Poster: Topological Detection of Trojaned Neural Networks »
Songzhu Zheng · Yikai Zhang · Hubert Wagner · Mayank Goswami · Chao Chen -
2021 Poster: Learning Distilled Collaboration Graph for Multi-Agent Perception »
Yiming Li · Shunli Ren · Pengxiang Wu · Siheng Chen · Chen Feng · Wenjun Zhang -
2021 Poster: Improved Transformer for High-Resolution GANs »
Long Zhao · Zizhao Zhang · Ting Chen · Dimitris Metaxas · Han Zhang -
2020 Poster: Maximum-Entropy Adversarial Data Augmentation for Improved Generalization and Robustness »
Long Zhao · Ting Liu · Xi Peng · Dimitris Metaxas -
2020 Poster: Deep Subspace Clustering with Data Augmentation »
Mahdi Abavisani · Alireza Naghizadeh · Dimitris Metaxas · Vishal Patel -
2019 Poster: Rethinking Kernel Methods for Node Representation Learning on Graphs »
Yu Tian · Long Zhao · Xi Peng · Dimitris Metaxas -
2017 : Poster Session »
Tsz Kit Lau · Johannes Maly · Nicolas Loizou · Christian Kroer · Yuan Yao · Youngsuk Park · Reka Agnes Kovacs · Dong Yin · Vlad Zhukov · Woosang Lim · David Barmherzig · Dimitris Metaxas · Bin Shi · Rajan Udwani · William Brendel · Yi Zhou · Vladimir Braverman · Sijia Liu · Eugene Golikov -
2014 Poster: Mode Estimation for High Dimensional Discrete Tree Graphical Models »
Chao Chen · Han Liu · Dimitris Metaxas · Tianqi Zhao -
2014 Spotlight: Mode Estimation for High Dimensional Discrete Tree Graphical Models »
Chao Chen · Han Liu · Dimitris Metaxas · Tianqi Zhao