Timezone: »
Value estimation is a critical component of the reinforcement learning (RL) paradigm. The question of how to effectively learn value predictors from data is one of the major problems studied by the RL community, and different approaches exploit structure in the problem domain in different ways. Model learning can make use of the rich transition structure present in sequences of observations, but this approach is usually not sensitive to the reward function. In contrast, model-free methods directly leverage the quantity of interest from the future, but receive a potentially weak scalar signal (an estimate of the return). We develop an approach for representation learning in RL that sits in between these two extremes: we propose to learn what to model in a way that can directly help value prediction. To this end, we determine which features of the future trajectory provide useful information to predict the associated return. This provides tractable prediction targets that are directly relevant for a task, and can thus accelerate learning the value function. The idea can be understood as reasoning, in hindsight, about which aspects of the future observations could help past value prediction. We show how this can help dramatically even in simple policy evaluation settings. We then test our approach at scale in challenging domains, including on 57 Atari 2600 games.
Author Information
Arthur Guez (DeepMind)
Fabio Viola (DeepMind)
Theophane Weber (DeepMind)
Lars Buesing (Google DeepMind)
Steven Kapturowski (Deepmind)
Doina Precup (DeepMind)
David Silver (DeepMind)
Nicolas Heess (Google DeepMind)
More from the Same Authors
-
2021 Spotlight: Proper Value Equivalence »
Christopher Grimm · Andre Barreto · Greg Farquhar · David Silver · Satinder Singh -
2021 Spotlight: Flexible Option Learning »
Martin Klissarov · Doina Precup -
2021 Spotlight: Online and Offline Reinforcement Learning by Planning with a Learned Model »
Julian Schrittwieser · Thomas Hubert · Amol Mandhane · Mohammadamin Barekatain · Ioannis Antonoglou · David Silver -
2021 : Is Curiosity All You Need? On the Utility of Emergent Behaviours from Curious Exploration »
Oliver Groth · Markus Wulfmeier · Giulia Vezzani · Vibhavari Dasagi · Tim Hertweck · Roland Hafner · Nicolas Heess · Martin Riedmiller -
2021 : Learning Transferable Motor Skills with Hierarchical Latent Mixture Policies »
Dushyant Rao · Fereshteh Sadeghi · Leonard Hasenclever · Markus Wulfmeier · Martina Zambelli · Giulia Vezzani · Dhruva Tirumala · Yusuf Aytar · Josh Merel · Nicolas Heess · Raia Hadsell -
2021 : Policy Gradients Incorporating the Future »
David Venuto · Elaine Lau · Doina Precup · Ofir Nachum -
2021 : A Consciousness-Inspired Planning Agent for Model-Based Reinforcement Learning »
Mingde Zhao · Zhen Liu · Sitao Luan · Shuyuan Zhang · Doina Precup · Yoshua Bengio -
2021 : Offline Meta-Reinforcement Learning for Industrial Insertion »
Tony Zhao · Jianlan Luo · Oleg Sushkov · Rugile Pevceviciute · Nicolas Heess · Jonathan Scholz · Stefan Schaal · Sergey Levine -
2022 Poster: Large-Scale Retrieval for Reinforcement Learning »
Peter Humphreys · Arthur Guez · Olivier Tieleman · Laurent Sifre · Theophane Weber · Timothy Lillicrap -
2022 Poster: Data augmentation for efficient learning from parametric experts »
Alexandre Galashov · Josh Merel · Nicolas Heess -
2021 : Invited Speaker Panel »
Sham Kakade · Minmin Chen · Philip Thomas · Angela Schoellig · Barbara Engelhardt · Doina Precup · George Tucker -
2021 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · Chelsea Finn · David Silver · Matthew Taylor · Martha White · Srijita Das · Yuqing Du · Andrew Patterson · Manan Tomar · Olivia Watkins -
2021 : Bootstrapped Meta-Learning »
Sebastian Flennerhag · Yannick Schroecker · Tom Zahavy · Hado van Hasselt · David Silver · Satinder Singh -
2021 Poster: Entropic Desired Dynamics for Intrinsic Control »
Steven Hansen · Guillaume Desjardins · Kate Baumli · David Warde-Farley · Nicolas Heess · Simon Osindero · Volodymyr Mnih -
2021 Poster: On the Expressivity of Markov Reward »
David Abel · Will Dabney · Anna Harutyunyan · Mark Ho · Michael Littman · Doina Precup · Satinder Singh -
2021 Poster: Gradient Starvation: A Learning Proclivity in Neural Networks »
Mohammad Pezeshki · Oumar Kaba · Yoshua Bengio · Aaron Courville · Doina Precup · Guillaume Lajoie -
2021 Poster: Proper Value Equivalence »
Christopher Grimm · Andre Barreto · Greg Farquhar · David Silver · Satinder Singh -
2021 Poster: Flexible Option Learning »
Martin Klissarov · Doina Precup -
2021 Poster: A Consciousness-Inspired Planning Agent for Model-Based Reinforcement Learning »
Mingde Zhao · Zhen Liu · Sitao Luan · Shuyuan Zhang · Doina Precup · Yoshua Bengio -
2021 Poster: Neural Production Systems »
Anirudh Goyal · Aniket Didolkar · Nan Rosemary Ke · Charles Blundell · Philippe Beaudoin · Nicolas Heess · Michael Mozer · Yoshua Bengio -
2021 Poster: Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation »
Emmanuel Bengio · Moksh Jain · Maksym Korablyov · Doina Precup · Yoshua Bengio -
2021 Poster: Discovery of Options via Meta-Learned Subgoals »
Vivek Veeriah · Tom Zahavy · Matteo Hessel · Zhongwen Xu · Junhyuk Oh · Iurii Kemaev · Hado van Hasselt · David Silver · Satinder Singh -
2021 Poster: Temporally Abstract Partial Models »
Khimya Khetarpal · Zafarali Ahmed · Gheorghe Comanici · Doina Precup -
2021 Poster: Self-Consistent Models and Values »
Greg Farquhar · Kate Baumli · Zita Marinho · Angelos Filos · Matteo Hessel · Hado van Hasselt · David Silver -
2021 Poster: Online and Offline Reinforcement Learning by Planning with a Learned Model »
Julian Schrittwieser · Thomas Hubert · Amol Mandhane · Mohammadamin Barekatain · Ioannis Antonoglou · David Silver -
2021 Oral: On the Expressivity of Markov Reward »
David Abel · Will Dabney · Anna Harutyunyan · Mark Ho · Michael Littman · Doina Precup · Satinder Singh -
2020 : Mini-panel discussion 3 - Prioritizing Real World RL Challenges »
Chelsea Finn · Thomas Dietterich · Angela Schoellig · Anca Dragan · Anusha Nagabandi · Doina Precup -
2020 Workshop: The Challenges of Real World Reinforcement Learning »
Daniel Mankowitz · Gabriel Dulac-Arnold · Shie Mannor · Omer Gottesman · Anusha Nagabandi · Doina Precup · Timothy A Mann · Gabriel Dulac-Arnold -
2020 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · Chelsea Finn · Joelle Pineau · David Silver · Satinder Singh · Coline Devin · Misha Laskin · Kimin Lee · Janarthanan Rajendran · Vivek Veeriah -
2020 Poster: Discovering Reinforcement Learning Algorithms »
Junhyuk Oh · Matteo Hessel · Wojciech Czarnecki · Zhongwen Xu · Hado van Hasselt · Satinder Singh · David Silver -
2020 Poster: Pointer Graph Networks »
Petar Veličković · Lars Buesing · Matthew Overlan · Razvan Pascanu · Oriol Vinyals · Charles Blundell -
2020 Poster: Meta-Gradient Reinforcement Learning with an Objective Discovered Online »
Zhongwen Xu · Hado van Hasselt · Matteo Hessel · Junhyuk Oh · Satinder Singh · David Silver -
2020 Poster: Critic Regularized Regression »
Ziyu Wang · Alexander Novikov · Konrad Zolna · Josh Merel · Jost Tobias Springenberg · Scott Reed · Bobak Shahriari · Noah Siegel · Caglar Gulcehre · Nicolas Heess · Nando de Freitas -
2020 Spotlight: Pointer Graph Networks »
Petar Veličković · Lars Buesing · Matthew Overlan · Razvan Pascanu · Oriol Vinyals · Charles Blundell -
2020 Poster: RL Unplugged: A Suite of Benchmarks for Offline Reinforcement Learning »
Caglar Gulcehre · Ziyu Wang · Alexander Novikov · Thomas Paine · Sergio Gómez · Konrad Zolna · Rishabh Agarwal · Josh Merel · Daniel Mankowitz · Cosmin Paduraru · Gabriel Dulac-Arnold · Jerry Li · Mohammad Norouzi · Matthew Hoffman · Nicolas Heess · Nando de Freitas -
2020 Poster: A Self-Tuning Actor-Critic Algorithm »
Tom Zahavy · Zhongwen Xu · Vivek Veeriah · Matteo Hessel · Junhyuk Oh · Hado van Hasselt · David Silver · Satinder Singh -
2020 Poster: On Efficiency in Hierarchical Reinforcement Learning »
Zheng Wen · Doina Precup · Morteza Ibrahimi · Andre Barreto · Benjamin Van Roy · Satinder Singh -
2020 Poster: The Value Equivalence Principle for Model-Based Reinforcement Learning »
Christopher Grimm · Andre Barreto · Satinder Singh · David Silver -
2020 Poster: Direct Policy Gradients: Direct Optimization of Policies in Discrete Action Spaces »
Guy Lorberbom · Chris Maddison · Nicolas Heess · Tamir Hazan · Danny Tarlow -
2020 Spotlight: On Efficiency in Hierarchical Reinforcement Learning »
Zheng Wen · Doina Precup · Morteza Ibrahimi · Andre Barreto · Benjamin Van Roy · Satinder Singh -
2019 : Late-Breaking Papers (Talks) »
David Silver · Simon Du · Matthias Plappert -
2019 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · Chelsea Finn · Joelle Pineau · David Silver · Satinder Singh · Joshua Achiam · Carlos Florensa · Christopher Grimm · Haoran Tang · Vivek Veeriah -
2019 Poster: Discovery of Useful Questions as Auxiliary Tasks »
Vivek Veeriah · Matteo Hessel · Zhongwen Xu · Janarthanan Rajendran · Richard L Lewis · Junhyuk Oh · Hado van Hasselt · David Silver · Satinder Singh -
2019 Demonstration: The Option Keyboard: Combining Skills in Reinforcement Learning »
Daniel Toyama · Shaobo Hou · Gheorghe Comanici · Andre Barreto · Doina Precup · Shibl Mourad · Eser Aygün · Philippe Hamel -
2019 Poster: The Option Keyboard: Combining Skills in Reinforcement Learning »
Andre Barreto · Diana Borsa · Shaobo Hou · Gheorghe Comanici · Eser Aygün · Philippe Hamel · Daniel Toyama · jonathan j hunt · Shibl Mourad · David Silver · Doina Precup -
2019 Poster: Hindsight Credit Assignment »
Anna Harutyunyan · Will Dabney · Thomas Mesnard · Mohammad Gheshlaghi Azar · Bilal Piot · Nicolas Heess · Hado van Hasselt · Gregory Wayne · Satinder Singh · Doina Precup · Remi Munos -
2019 Spotlight: Hindsight Credit Assignment »
Anna Harutyunyan · Will Dabney · Thomas Mesnard · Mohammad Gheshlaghi Azar · Bilal Piot · Nicolas Heess · Hado van Hasselt · Gregory Wayne · Satinder Singh · Doina Precup · Remi Munos -
2018 : Discussion Panel: Ryan Adams, Nicolas Heess, Leslie Kaelbling, Shie Mannor, Emo Todorov (moderator: Roy Fox) »
Ryan Adams · Nicolas Heess · Leslie Kaelbling · Shie Mannor · Emo Todorov · Roy Fox -
2018 : Probabilistic Reasoning for Reinforcement Learning (Nicolas Heess) »
Nicolas Heess -
2018 : David Silver »
David Silver -
2018 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · David Silver · Satinder Singh · Joelle Pineau · Joshua Achiam · Rein Houthooft · Aravind Srinivas -
2018 Poster: Meta-Gradient Reinforcement Learning »
Zhongwen Xu · Hado van Hasselt · David Silver -
2018 Poster: Single-Agent Policy Tree Search With Guarantees »
Laurent Orseau · Levi Lelis · Tor Lattimore · Theophane Weber -
2018 Poster: Relational recurrent neural networks »
Adam Santoro · Ryan Faulkner · David Raposo · Jack Rae · Mike Chrzanowski · Theophane Weber · Daan Wierstra · Oriol Vinyals · Razvan Pascanu · Timothy Lillicrap -
2017 : Panel Discussion »
Matt Botvinick · Emma Brunskill · Marcos Campos · Jan Peters · Doina Precup · David Silver · Josh Tenenbaum · Roy Fox -
2017 : Deep Reinforcement Learning with Subgoals (David Silver) »
David Silver -
2017 Symposium: Deep Reinforcement Learning »
Pieter Abbeel · Yan Duan · David Silver · Satinder Singh · Junhyuk Oh · Rein Houthooft -
2017 Poster: Natural Value Approximators: Learning when to Trust Past Estimates »
Zhongwen Xu · Joseph Modayil · Hado van Hasselt · Andre Barreto · David Silver · Tom Schaul -
2017 Poster: Successor Features for Transfer in Reinforcement Learning »
Andre Barreto · Will Dabney · Remi Munos · Jonathan Hunt · Tom Schaul · David Silver · Hado van Hasselt -
2017 Poster: A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning »
Marc Lanctot · Vinicius Zambaldi · Audrunas Gruslys · Angeliki Lazaridou · Karl Tuyls · Julien Perolat · David Silver · Thore Graepel -
2017 Poster: Distral: Robust multitask reinforcement learning »
Yee Teh · Victor Bapst · Wojciech Czarnecki · John Quan · James Kirkpatrick · Raia Hadsell · Nicolas Heess · Razvan Pascanu -
2017 Poster: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Spotlight: Successor Features for Transfer in Reinforcement Learning »
Andre Barreto · Will Dabney · Remi Munos · Jonathan Hunt · Tom Schaul · David Silver · Hado van Hasselt -
2017 Spotlight: Natural Value Approximators: Learning when to Trust Past Estimates »
Zhongwen Xu · Joseph Modayil · Hado van Hasselt · Andre Barreto · David Silver · Tom Schaul -
2017 Oral: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Poster: Visual Interaction Networks: Learning a Physics Simulator from Video »
Nicholas Watters · Daniel Zoran · Theophane Weber · Peter Battaglia · Razvan Pascanu · Andrea Tacchetti -
2017 Poster: Filtering Variational Objectives »
Chris Maddison · John Lawson · George Tucker · Nicolas Heess · Mohammad Norouzi · Andriy Mnih · Arnaud Doucet · Yee Teh -
2017 Poster: Robust Imitation of Diverse Behaviors »
Ziyu Wang · Josh Merel · Scott Reed · Nando de Freitas · Gregory Wayne · Nicolas Heess -
2017 Poster: Learning Hierarchical Information Flow with Recurrent Neural Modules »
Danijar Hafner · Alexander Irpan · James Davidson · Nicolas Heess -
2016 Poster: Unsupervised Learning of 3D Structure from Images »
Danilo Jimenez Rezende · S. M. Ali Eslami · Shakir Mohamed · Peter Battaglia · Max Jaderberg · Nicolas Heess -
2016 Poster: Attend, Infer, Repeat: Fast Scene Understanding with Generative Models »
S. M. Ali Eslami · Nicolas Heess · Theophane Weber · Yuval Tassa · David Szepesvari · koray kavukcuoglu · Geoffrey E Hinton -
2016 Poster: Learning values across many orders of magnitude »
Hado van Hasselt · Arthur Guez · Arthur Guez · Matteo Hessel · Volodymyr Mnih · David Silver -
2015 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · John Schulman · Satinder Singh · David Silver -
2015 Poster: Gradient Estimation Using Stochastic Computation Graphs »
John Schulman · Nicolas Heess · Theophane Weber · Pieter Abbeel -
2015 Poster: Learning Continuous Control Policies by Stochastic Value Gradients »
Nicolas Heess · Gregory Wayne · David Silver · Timothy Lillicrap · Tom Erez · Yuval Tassa -
2014 Workshop: Novel Trends and Applications in Reinforcement Learning »
Csaba Szepesvari · Marc Deisenroth · Sergey Levine · Pedro Ortega · Brian Ziebart · Emma Brunskill · Naftali Tishby · Gerhard Neumann · Daniel Lee · Sridhar Mahadevan · Pieter Abbeel · David Silver · Vicenç Gómez -
2014 Poster: Recurrent Models of Visual Attention »
Volodymyr Mnih · Nicolas Heess · Alex Graves · koray kavukcuoglu -
2014 Spotlight: Recurrent Models of Visual Attention »
Volodymyr Mnih · Nicolas Heess · Alex Graves · koray kavukcuoglu -
2014 Poster: Bayes-Adaptive Simulation-based Search with Value Function Approximation »
Arthur Guez · Nicolas Heess · David Silver · Peter Dayan -
2012 Poster: Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search »
Arthur Guez · David Silver · Peter Dayan -
2010 Poster: Monte-Carlo Planning in Large POMDPs »
David Silver · Joel Veness -
2009 Poster: Bootstrapping from Game Tree Search »
Joel Veness · David Silver · William Uther · Alan Blair -
2009 Oral: Bootstrapping from Game Tree Search »
Joel Veness · David Silver · William Uther · Alan Blair -
2009 Poster: Convergent Temporal-Difference Learning with Arbitrary Smooth Function Approximation »
Hamid R Maei · Csaba Szepesvari · Shalabh Batnaghar · Doina Precup · David Silver · Richard Sutton -
2009 Spotlight: Convergent Temporal-Difference Learning with Arbitrary Smooth Function Approximation »
Hamid R Maei · Csaba Szepesvari · Shalabh Batnaghar · Doina Precup · David Silver · Richard Sutton