Timezone: »
Poster
Model-based Reinforcement Learning for Semi-Markov Decision Processes with Neural ODEs
Jianzhun Du · Joseph Futoma · Finale Doshi-Velez
We present two elegant solutions for modeling continuous-time dynamics, in a novel model-based reinforcement learning (RL) framework for semi-Markov decision processes (SMDPs), using neural ordinary differential equations (ODEs). Our models accurately characterize continuous-time dynamics and enable us to develop high-performing policies using a small amount of data. We also develop a model-based approach for optimizing time schedules to reduce interaction rates with the environment while maintaining the near-optimal performance, which is not possible for model-free methods. We experimentally demonstrate the efficacy of our methods across various continuous-time domains.
Author Information
Jianzhun Du (Harvard University)
Joseph Futoma (Harvard University)
Finale Doshi-Velez (Harvard)
More from the Same Authors
-
2020 Workshop: I Can’t Believe It’s Not Better! Bridging the gap between theory and empiricism in probabilistic machine learning »
Jessica Forde · Francisco Ruiz · Melanie Fernandez Pradier · Aaron Schein · Finale Doshi-Velez · Isabel Valera · David Blei · Hanna Wallach -
2020 Poster: Incorporating Interpretable Output Constraints in Bayesian Neural Networks »
Wanqian Yang · Lars Lorch · Moritz Graule · Himabindu Lakkaraju · Finale Doshi-Velez -
2020 Spotlight: Incorporating Interpretable Output Constraints in Bayesian Neural Networks »
Wanqian Yang · Lars Lorch · Moritz Graule · Himabindu Lakkaraju · Finale Doshi-Velez -
2018 Poster: Human-in-the-Loop Interpretability Prior »
Isaac Lage · Andrew Ross · Samuel J Gershman · Been Kim · Finale Doshi-Velez -
2018 Spotlight: Human-in-the-Loop Interpretability Prior »
Isaac Lage · Andrew Ross · Samuel J Gershman · Been Kim · Finale Doshi-Velez -
2018 Poster: Representation Balancing MDPs for Off-policy Policy Evaluation »
Yao Liu · Omer Gottesman · Aniruddh Raghu · Matthieu Komorowski · Aldo Faisal · Finale Doshi-Velez · Emma Brunskill -
2017 Poster: Robust and Efficient Transfer Learning with Hidden Parameter Markov Decision Processes »
Taylor Killian · Samuel Daulton · Finale Doshi-Velez · George Konidaris -
2017 Oral: Robust and Efficient Transfer Learning with Hidden Parameter Markov Decision Processes »
Taylor Killian · Samuel Daulton · Finale Doshi-Velez · George Konidaris -
2015 Workshop: Machine Learning From and For Adaptive User Technologies: From Active Learning & Experimentation to Optimization & Personalization »
Joseph Jay Williams · Yasin Abbasi Yadkori · Finale Doshi-Velez -
2015 Poster: Mind the Gap: A Generative Approach to Interpretable Feature Selection and Extraction »
Been Kim · Julie A Shah · Finale Doshi-Velez