Timezone: »

Efficient Variational Inference for Sparse Deep Learning with Theoretical Guarantee
Jincheng Bai · Qifan Song · Guang Cheng

Thu Dec 10 09:00 PM -- 11:00 PM (PST) @ Poster Session 6 #1898

Sparse deep learning aims to address the challenge of huge storage consumption by deep neural networks, and to recover the sparse structure of target functions. Although tremendous empirical successes have been achieved, most sparse deep learning algorithms are lacking of theoretical supports. On the other hand, another line of works have proposed theoretical frameworks that are computationally infeasible. In this paper, we train sparse deep neural networks with a fully Bayesian treatment under spike-and-slab priors, and develop a set of computationally efficient variational inferences via continuous relaxation of Bernoulli distribution. The variational posterior contraction rate is provided, which justifies the consistency of the proposed variational Bayes method. Interestingly, our empirical results demonstrate that this variational procedure provides uncertainty quantification in terms of Bayesian predictive distribution and is also capable to accomplish consistent variable selection by training a sparse multi-layer neural network.

Author Information

Jincheng Bai (Purdue University)
Qifan Song (Purdue University )
Guang Cheng (Purdue University)

More from the Same Authors