Timezone: »
Biased regularization and fine tuning are two recent meta-learning approaches. They have been shown to be effective to tackle distributions of tasks, in which the tasks’ target vectors are all close to a common meta-parameter vector. However, these methods may perform poorly on heterogeneous environments of tasks, where the complexity of the tasks’ distribution cannot be captured by a single meta- parameter vector. We address this limitation by conditional meta-learning, inferring a conditioning function mapping task’s side information into a meta-parameter vector that is appropriate for that task at hand. We characterize properties of the environment under which the conditional approach brings a substantial advantage over standard meta-learning and we highlight examples of environments, such as those with multiple clusters, satisfying these properties. We then propose a convex meta-algorithm providing a comparable advantage also in practice. Numerical experiments confirm our theoretical findings.
Author Information
Giulia Denevi (University College of London)
Massimiliano Pontil (IIT & UCL)
Carlo Ciliberto (Imperial College London)
More from the Same Authors
-
2022 Poster: Conditional Meta-Learning of Linear Representations »
Giulia Denevi · Massimiliano Pontil · Carlo Ciliberto -
2022 Spotlight: Conditional Meta-Learning of Linear Representations »
Giulia Denevi · Massimiliano Pontil · Carlo Ciliberto -
2022 Spotlight: Lightning Talks 3B-1 »
Tianying Ji · Tongda Xu · Giulia Denevi · Aibek Alanov · Martin Wistuba · Wei Zhang · Yuesong Shen · Massimiliano Pontil · Vadim Titov · Yan Wang · Yu Luo · Daniel Cremers · Yanjun Han · Arlind Kadra · Dailan He · Josif Grabocka · Zhengyuan Zhou · Fuchun Sun · Carlo Ciliberto · Dmitry Vetrov · Mingxuan Jing · Chenjian Gao · Aaron Flores · Tsachy Weissman · Han Gao · Fengxiang He · Kunzan Liu · Wenbing Huang · Hongwei Qin -
2022 Poster: Learning Dynamical Systems via Koopman Operator Regression in Reproducing Kernel Hilbert Spaces »
Vladimir Kostic · Pietro Novelli · Andreas Maurer · Carlo Ciliberto · Lorenzo Rosasco · Massimiliano Pontil -
2021 : Carlo Ciliberto Q&A »
Carlo Ciliberto -
2021 : Carlo Ciliberto »
Carlo Ciliberto -
2021 Poster: PSD Representations for Effective Probability Models »
Alessandro Rudi · Carlo Ciliberto -
2021 Poster: The Role of Global Labels in Few-Shot Classification and How to Infer Them »
Ruohan Wang · Massimiliano Pontil · Carlo Ciliberto -
2020 Poster: Exploiting Higher Order Smoothness in Derivative-free Optimization and Continuous Bandits »
Arya Akhavan · Massimiliano Pontil · Alexandre Tsybakov -
2020 Poster: Estimating weighted areas under the ROC curve »
Andreas Maurer · Massimiliano Pontil -
2020 Poster: Structured Prediction for Conditional Meta-Learning »
Ruohan Wang · Yiannis Demiris · Carlo Ciliberto -
2020 Poster: Exploiting MMD and Sinkhorn Divergences for Fair and Transferable Representation Learning »
Luca Oneto · Michele Donini · Giulia Luise · Carlo Ciliberto · Andreas Maurer · Massimiliano Pontil -
2019 Poster: Online-Within-Online Meta-Learning »
Giulia Denevi · Dimitris Stamos · Carlo Ciliberto · Massimiliano Pontil -
2019 Poster: Localized Structured Prediction »
Carlo Ciliberto · Francis Bach · Alessandro Rudi -
2019 Poster: Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm »
Giulia Luise · Saverio Salzo · Massimiliano Pontil · Carlo Ciliberto -
2019 Spotlight: Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm »
Giulia Luise · Saverio Salzo · Massimiliano Pontil · Carlo Ciliberto -
2018 Poster: Bilevel learning of the Group Lasso structure »
Jordan Frecon · Saverio Salzo · Massimiliano Pontil -
2018 Poster: Learning To Learn Around A Common Mean »
Giulia Denevi · Carlo Ciliberto · Dimitris Stamos · Massimiliano Pontil -
2018 Spotlight: Bilevel learning of the Group Lasso structure »
Jordan Frecon · Saverio Salzo · Massimiliano Pontil -
2018 Poster: Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance »
Giulia Luise · Alessandro Rudi · Massimiliano Pontil · Carlo Ciliberto -
2018 Poster: Manifold Structured Prediction »
Alessandro Rudi · Carlo Ciliberto · Gian Maria Marconi · Lorenzo Rosasco -
2017 : An Efficient Method to Impose Fairness in Linear Models »
Massimiliano Pontil · John Shawe-Taylor -
2017 Workshop: Workshop on Prioritising Online Content »
John Shawe-Taylor · Massimiliano Pontil · Nicolò Cesa-Bianchi · Emine Yilmaz · Chris Watkins · Sebastian Riedel · Marko Grobelnik -
2017 Poster: Consistent Multitask Learning with Nonlinear Output Relations »
Carlo Ciliberto · Alessandro Rudi · Lorenzo Rosasco · Massimiliano Pontil -
2016 Poster: A Consistent Regularization Approach for Structured Prediction »
Carlo Ciliberto · Lorenzo Rosasco · Alessandro Rudi -
2016 Poster: Mistake Bounds for Binary Matrix Completion »
Mark Herbster · Stephen Pasteris · Massimiliano Pontil -
2015 : The Benefit of Multitask Representation Learning »
Massimiliano Pontil -
2014 Poster: Spectral k-Support Norm Regularization »
Andrew McDonald · Massimiliano Pontil · Dimitris Stamos -
2013 Workshop: New Directions in Transfer and Multi-Task: Learning Across Domains and Tasks »
Urun Dogan · Marius Kloft · Tatiana Tommasi · Francesco Orabona · Massimiliano Pontil · Sinno Jialin Pan · Shai Ben-David · Arthur Gretton · Fei Sha · Marco Signoretto · Rajhans Samdani · Yun-Qian Miao · Mohammad Gheshlaghi azar · Ruth Urner · Christoph Lampert · Jonathan How -
2013 Workshop: Output Representation Learning »
Yuhong Guo · Dale Schuurmans · Richard Zemel · Samy Bengio · Yoshua Bengio · Li Deng · Dan Roth · Kilian Q Weinberger · Jason Weston · Kihyuk Sohn · Florent Perronnin · Gabriel Synnaeve · Pablo R Strasser · julien audiffren · Carlo Ciliberto · Dan Goldwasser -
2013 Poster: A New Convex Relaxation for Tensor Completion »
Bernardino Romera-Paredes · Massimiliano Pontil -
2012 Poster: Optimal kernel choice for large-scale two-sample tests »
Arthur Gretton · Bharath Sriperumbudur · Dino Sejdinovic · Heiko Strathmann · Sivaraman Balakrishnan · Massimiliano Pontil · Kenji Fukumizu -
2010 Spotlight: A Family of Penalty Functions for Structured Sparsity »
Charles A Micchelli · Jean M Morales · Massimiliano Pontil -
2010 Poster: A Family of Penalty Functions for Structured Sparsity »
Charles A Micchelli · Jean M Morales · Massimiliano Pontil -
2008 Poster: Fast Prediction on a Tree »
Mark Herbster · Massimiliano Pontil · Sergio Rojas Galeano -
2008 Oral: Fast Prediction on a Tree »
Mark Herbster · Massimiliano Pontil · Sergio Rojas Galeano -
2008 Poster: On-Line Prediction on Large Diameter Graphs »
Mark Herbster · Massimiliano Pontil · Guy Lever -
2007 Spotlight: A Spectral Regularization Framework for Multi-Task Structure Learning »
Andreas Argyriou · Charles A. Micchelli · Massimiliano Pontil · Yiming Ying -
2007 Poster: A Spectral Regularization Framework for Multi-Task Structure Learning »
Andreas Argyriou · Charles A. Micchelli · Massimiliano Pontil · Yiming Ying -
2006 Poster: Prediction on a Graph with a Perceptron »
Mark Herbster · Massimiliano Pontil -
2006 Spotlight: Prediction on a Graph with a Perceptron »
Mark Herbster · Massimiliano Pontil -
2006 Poster: Multi-Task Feature Learning »
Andreas Argyriou · Theos Evgeniou · Massimiliano Pontil