Timezone: »
Poster
Refactoring Policy for Compositional Generalizability using Self-Supervised Object Proposals
Tongzhou Mu · Jiayuan Gu · Zhiwei Jia · Hao Tang · Hao Su
We study how to learn a policy with compositional generalizability. We propose a two-stage framework, which refactorizes a high-reward teacher policy into a generalizable student policy with strong inductive bias. Particularly, we implement an object-centric GNN-based student policy, whose input objects are learned from images through self-supervised learning. Empirically, we evaluate our approach on four difficult tasks that require compositional generalizability, and achieve superior performance compared to baselines.
Author Information
Tongzhou Mu (University of California, San Diego)
Jiayuan Gu (University of California, San Diego)
Zhiwei Jia (University of California, San Diego)
Hao Tang (Shanghai Jiao Tong University)
Hao Su (UCSD)
More from the Same Authors
-
2020 Poster: Towards Scale-Invariant Graph-related Problem Solving by Iterative Homogeneous GNNs »
Hao Tang · Zhiao Huang · Jiayuan Gu · Bao-Liang Lu · Hao Su -
2020 Poster: Belief Propagation Neural Networks »
Jonathan Kuck · Shuvam Chakraborty · Hao Tang · Rachel Luo · Jiaming Song · Ashish Sabharwal · Stefano Ermon -
2020 Poster: Multi-task Batch Reinforcement Learning with Metric Learning »
Jiachen Li · Quan Vuong · Shuang Liu · Minghua Liu · Kamil Ciosek · Henrik Christensen · Hao Su -
2018 Poster: Deep Functional Dictionaries: Learning Consistent Semantic Structures on 3D Models from Functions »
Minhyuk Sung · Hao Su · Ronald Yu · Leonidas Guibas -
2017 Poster: PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space »
Charles Ruizhongtai Qi · Li Yi · Hao Su · Leonidas Guibas -
2016 Poster: FPNN: Field Probing Neural Networks for 3D Data »
Yangyan Li · Soeren Pirk · Hao Su · Charles R Qi · Leonidas Guibas -
2010 Poster: Object Bank: A High-Level Image Representation for Scene Classification & Semantic Feature Sparsification »
Li-Jia Li · Hao Su · Eric Xing · Li Fei-Fei