Timezone: »
Machine learning with missing data has been approached in many different ways, including feature imputation where missing feature values are estimated based on observed values and label prediction where downstream labels are learned directly from incomplete data. However, existing imputation models tend to have strong prior assumptions and cannot learn from downstream tasks, while models targeting label predictions often involve heuristics and can encounter scalability issues. Here we propose GRAPE, a framework for feature imputation as well as label prediction. GRAPE tackles the missing data problem using graph representation, where the observations and features are viewed as two types of nodes in a bipartite graph, and the observed feature values as edges. Under the GRAPE framework, the feature imputation is formulated as an edge-level prediction task and the label prediction as a node-level prediction task. These tasks are then solved with Graph Neural Networks. Experimental results on nine benchmark datasets show that GRAPE yields 20% lower mean absolute error for imputation tasks and 10% lower for label prediction tasks, compared with existing state-of-the-art methods.
Author Information
Jiaxuan You (Stanford University)

I received my Ph.D. and M.S. degrees from Department of Computer Science, Stanford University, advised by Prof. Jure Leskovec. My research aims at developing data-driven methods to study our interconnected world. I investigate scientific and industrial problems through the lens of graph/relational data, and develop AI/ML solutions for these problems.
Xiaobai Ma (Stanford University)
Yi Ding (Stanford University)
Mykel J Kochenderfer (Stanford University)
Jure Leskovec (Stanford University/Pinterest)
More from the Same Authors
-
2021 : Therapeutics Data Commons: Machine Learning Datasets and Tasks for Drug Discovery and Development »
Kexin Huang · Tianfan Fu · Wenhao Gao · Yue Zhao · Yusuf Roohani · Jure Leskovec · Connor Coley · Cao Xiao · Jimeng Sun · Marinka Zitnik -
2021 Spotlight: Combiner: Full Attention Transformer with Sparse Computation Cost »
Hongyu Ren · Hanjun Dai · Zihang Dai · Mengjiao (Sherry) Yang · Jure Leskovec · Dale Schuurmans · Bo Dai -
2021 : OGB-LSC: A Large-Scale Challenge for Machine Learning on Graphs »
Weihua Hu · Matthias Fey · Hongyu Ren · Maho Nakata · Yuxiao Dong · Jure Leskovec -
2021 : WildfireDB: An Open-Source Dataset Connecting Wildfire Occurrence with Relevant Determinants »
Samriddhi Singla · Ayan Mukhopadhyay · Michael Wilbur · Tina Diao · Vinayak Gajjewar · Ahmed Eldawy · Mykel J Kochenderfer · Ross Shachter · Abhishek Dubey -
2021 : Extending the WILDS Benchmark for Unsupervised Adaptation »
Shiori Sagawa · Pang Wei Koh · Tony Lee · Irena Gao · Sang Michael Xie · Kendrick Shen · Ananya Kumar · Weihua Hu · Michihiro Yasunaga · Henrik Marklund · Sara Beery · Ian Stavness · Jure Leskovec · Kate Saenko · Tatsunori Hashimoto · Sergey Levine · Chelsea Finn · Percy Liang -
2022 : Tabular deep learning when $d \gg n$ by using an auxiliary knowledge graph »
Camilo Ruiz · Hongyu Ren · Kexin Huang · Jure Leskovec -
2022 : Learning Controllable Adaptive Simulation for Multi-scale Physics »
Tailin Wu · Takashi Maruyama · Qingqing Zhao · Gordon Wetzstein · Jure Leskovec -
2022 : Learning Efficient Hybrid Particle-continuum Representations of Non-equilibrium N-body Systems »
Tailin Wu · Michael Sun · Hsuan-Gu Chou · Pranay Reddy Samala · Sithipont Cholsaipant · Sophia Kivelson · Jacqueline Yau · Rex Ying · E. Paulo Alves · Jure Leskovec · Frederico Fiuza -
2022 : A POMDP Model for Safe Geological Carbon Sequestration »
Anthony Corso · Yizheng Wang · Markus Zechner · Jef Caers · Mykel J Kochenderfer -
2022 : Fifteen-minute Competition Overview Video »
Nathan Drenkow · Raman Arora · Gino Perrotta · Todd Neller · Ryan Gardner · Mykel J Kochenderfer · Jared Markowitz · Corey Lowman · Casey Richardson · Bo Li · Bart Paulhamus · Ashley J Llorens · Andrew Newman -
2022 : AutoTransfer: AutoML with Knowledge Transfer - An Application to Graph Neural Networks »
Kaidi Cao · Jiaxuan You · Jiaju Liu · Jure Leskovec -
2022 : Efficient Automatic Machine Learning via Design Graphs »
Shirley Wu · Jiaxuan You · Jure Leskovec · Rex Ying -
2022 : Graph Q-Learning for Combinatorial Optimization »
Victoria Magdalena Dax · Jiachen Li · Kevin Leahy · Mykel J Kochenderfer -
2022 : Graph Q-Learning for Combinatorial Optimization »
Victoria Magdalena Dax · Jiachen Li · Kevin Leahy · Mykel J Kochenderfer -
2022 Competition: OGB-LSC 2022: A Large-Scale Challenge for ML on Graphs »
Weihua Hu · Matthias Fey · Hongyu Ren · Maho Nakata · Yuxiao Dong · Jure Leskovec -
2022 : Introduction to OGB-LSC »
Jure Leskovec -
2022 Competition: Reconnaissance Blind Chess: An Unsolved Challenge for Multi-Agent Decision Making Under Uncertainty »
Ryan Gardner · Gino Perrotta · Corey Lowman · Casey Richardson · Andrew Newman · Jared Markowitz · Nathan Drenkow · Bart Paulhamus · Ashley J Llorens · Todd Neller · Raman Arora · Bo Li · Mykel J Kochenderfer -
2022 Workshop: New Frontiers in Graph Learning »
Jiaxuan You · Marinka Zitnik · Rex Ying · Yizhou Sun · Hanjun Dai · Stefanie Jegelka -
2022 : Jiaxuan You »
Jiaxuan You -
2022 Workshop: AI for Science: Progress and Promises »
Yi Ding · Yuanqi Du · Tianfan Fu · Hanchen Wang · Anima Anandkumar · Yoshua Bengio · Anthony Gitter · Carla Gomes · Aviv Regev · Max Welling · Marinka Zitnik -
2022 Poster: Collaborative Decision Making Using Action Suggestions »
Dylan Asmar · Mykel J Kochenderfer -
2022 Poster: Interaction Modeling with Multiplex Attention »
Fan-Yun Sun · Isaac Kauvar · Ruohan Zhang · Jiachen Li · Mykel J Kochenderfer · Jiajun Wu · Nick Haber -
2022 Poster: Deep Bidirectional Language-Knowledge Graph Pretraining »
Michihiro Yasunaga · Antoine Bosselut · Hongyu Ren · Xikun Zhang · Christopher D Manning · Percy Liang · Jure Leskovec -
2022 Poster: ZeroC: A Neuro-Symbolic Model for Zero-shot Concept Recognition and Acquisition at Inference Time »
Tailin Wu · Megan Tjandrasuwita · Zhengxuan Wu · Xuelin Yang · Kevin Liu · Rok Sosic · Jure Leskovec -
2022 Poster: Learning to Accelerate Partial Differential Equations via Latent Global Evolution »
Tailin Wu · Takashi Maruyama · Jure Leskovec -
2022 Poster: Risk-Driven Design of Perception Systems »
Anthony Corso · Sydney Katz · Craig Innes · Xin Du · Subramanian Ramamoorthy · Mykel J Kochenderfer -
2022 Poster: Few-shot Relational Reasoning via Connection Subgraph Pretraining »
Qian Huang · Hongyu Ren · Jure Leskovec -
2021 Poster: Combiner: Full Attention Transformer with Sparse Computation Cost »
Hongyu Ren · Hanjun Dai · Zihang Dai · Mengjiao (Sherry) Yang · Jure Leskovec · Dale Schuurmans · Bo Dai -
2021 Poster: Modeling Heterogeneous Hierarchies with Relation-specific Hyperbolic Cones »
Yushi Bai · Zhitao Ying · Hongyu Ren · Jure Leskovec -
2021 Poster: Neural Distance Embeddings for Biological Sequences »
Gabriele Corso · Zhitao Ying · Michal Pándy · Petar Veličković · Jure Leskovec · Pietro Liò -
2021 Poster: Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models »
Phil Chen · Masha Itkina · Ransalu Senanayake · Mykel J Kochenderfer -
2021 : Reconnaissance Blind Chess + Q&A »
Ryan Gardner · Gino Perrotta · Corey Lowman · Casey Richardson · Andrew Newman · Jared Markowitz · Nathan Drenkow · Bart Paulhamus · Ashley J Llorens · Todd Neller · Raman Arora · Bo Li · Mykel J Kochenderfer -
2020 : Q&A #2 »
Heng Ji · Jure Leskovec · Jiajun Wu -
2020 : Invited Talk #4 »
Jure Leskovec -
2020 Poster: Open Graph Benchmark: Datasets for Machine Learning on Graphs »
Weihua Hu · Matthias Fey · Marinka Zitnik · Yuxiao Dong · Hongyu Ren · Bowen Liu · Michele Catasta · Jure Leskovec -
2020 Poster: Coresets for Robust Training of Deep Neural Networks against Noisy Labels »
Baharan Mirzasoleiman · Kaidi Cao · Jure Leskovec -
2020 Poster: Graph Information Bottleneck »
Tailin Wu · Hongyu Ren · Pan Li · Jure Leskovec -
2020 Spotlight: Open Graph Benchmark: Datasets for Machine Learning on Graphs »
Weihua Hu · Matthias Fey · Marinka Zitnik · Yuxiao Dong · Hongyu Ren · Bowen Liu · Michele Catasta · Jure Leskovec -
2020 Poster: Distance Encoding: Design Provably More Powerful Neural Networks for Graph Representation Learning »
Pan Li · Yanbang Wang · Hongwei Wang · Jure Leskovec -
2020 Poster: Evidential Sparsification of Multimodal Latent Spaces in Conditional Variational Autoencoders »
Masha Itkina · Boris Ivanovic · Ransalu Senanayake · Mykel J Kochenderfer · Marco Pavone -
2020 Poster: Provably Efficient Reward-Agnostic Navigation with Linear Value Iteration »
Andrea Zanette · Alessandro Lazaric · Mykel J Kochenderfer · Emma Brunskill -
2020 Poster: Design Space for Graph Neural Networks »
Jiaxuan You · Zhitao Ying · Jure Leskovec -
2020 Poster: Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs »
Hongyu Ren · Jure Leskovec -
2020 Spotlight: Design Space for Graph Neural Networks »
Jiaxuan You · Zhitao Ying · Jure Leskovec -
2019 : Presentation and Discussion: Open Graph Benchmark »
Jure Leskovec -
2019 Workshop: Graph Representation Learning »
Will Hamilton · Rianne van den Berg · Michael Bronstein · Stefanie Jegelka · Thomas Kipf · Jure Leskovec · Renjie Liao · Yizhou Sun · Petar Veličković -
2019 Poster: Hyperbolic Graph Convolutional Neural Networks »
Ines Chami · Zhitao Ying · Christopher Ré · Jure Leskovec -
2019 Poster: G2SAT: Learning to Generate SAT Formulas »
Jiaxuan You · Haoze Wu · Clark Barrett · Raghuram Ramanujan · Jure Leskovec -
2019 Poster: Almost Horizon-Free Structure-Aware Best Policy Identification with a Generative Model »
Andrea Zanette · Mykel J Kochenderfer · Emma Brunskill -
2019 Poster: Limiting Extrapolation in Linear Approximate Value Iteration »
Andrea Zanette · Alessandro Lazaric · Mykel J Kochenderfer · Emma Brunskill -
2019 Poster: GNNExplainer: Generating Explanations for Graph Neural Networks »
Zhitao Ying · Dylan Bourgeois · Jiaxuan You · Marinka Zitnik · Jure Leskovec -
2018 Poster: Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation »
Jiaxuan You · Bowen Liu · Zhitao Ying · Vijay Pande · Jure Leskovec -
2018 Poster: Deep Dynamical Modeling and Control of Unsteady Fluid Flows »
Jeremy Morton · Antony Jameson · Mykel J Kochenderfer · Freddie Witherden -
2018 Poster: Dynamic Network Model from Partial Observations »
Elahe Ghalebi · Baharan Mirzasoleiman · Radu Grosu · Jure Leskovec -
2018 Spotlight: Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation »
Jiaxuan You · Bowen Liu · Zhitao Ying · Vijay Pande · Jure Leskovec -
2018 Spotlight: Dynamic Network Model from Partial Observations »
Elahe Ghalebi · Baharan Mirzasoleiman · Radu Grosu · Jure Leskovec -
2018 Poster: Hierarchical Graph Representation Learning with Differentiable Pooling »
Zhitao Ying · Jiaxuan You · Christopher Morris · Xiang Ren · Will Hamilton · Jure Leskovec -
2018 Spotlight: Hierarchical Graph Representation Learning with Differentiable Pooling »
Zhitao Ying · Jiaxuan You · Christopher Morris · Xiang Ren · Will Hamilton · Jure Leskovec -
2018 Poster: Embedding Logical Queries on Knowledge Graphs »
Will Hamilton · Payal Bajaj · Marinka Zitnik · Dan Jurafsky · Jure Leskovec -
2018 Poster: Amortized Inference Regularization »
Rui Shu · Hung Bui · Shengjia Zhao · Mykel J Kochenderfer · Stefano Ermon -
2017 : Jure Leskovec, Stanford »
Jure Leskovec -
2017 Poster: Inductive Representation Learning on Large Graphs »
Will Hamilton · Zhitao Ying · Jure Leskovec -
2016 : Building and Validating the AI behind the Next-Generation Aircraft Collision Avoidance System »
Mykel J Kochenderfer -
2016 Poster: Confusions over Time: An Interpretable Bayesian Model to Characterize Trends in Decision Making »
Himabindu Lakkaraju · Jure Leskovec -
2013 Workshop: Frontiers of Network Analysis: Methods, Models, and Applications »
Edo M Airoldi · David S Choi · Aaron Clauset · Khalid El-Arini · Jure Leskovec -
2013 Poster: Nonparametric Multi-group Membership Model for Dynamic Networks »
Myunghwan Kim · Jure Leskovec -
2012 Workshop: Social network and social media analysis: Methods, models and applications »
Edo M Airoldi · David S Choi · Khalid El-Arini · Jure Leskovec -
2012 Poster: Learning to Discover Social Circles in Ego Networks »
Julian J McAuley · Jure Leskovec -
2010 Workshop: Networks Across Disciplines: Theory and Applications »
Edo M Airoldi · Anna Goldenberg · Jure Leskovec · Quaid Morris -
2010 Oral: On the Convexity of Latent Social Network Inference »
Seth A Myers · Jure Leskovec -
2010 Poster: On the Convexity of Latent Social Network Inference »
Seth A Myers · Jure Leskovec -
2009 Workshop: Analyzing Networks and Learning With Graphs »
Edo M Airoldi · Jure Leskovec · Jon Kleinberg · Josh Tenenbaum