Timezone: »

Reinforcement Learning with Augmented Data
Misha Laskin · Kimin Lee · Adam Stooke · Lerrel Pinto · Pieter Abbeel · Aravind Srinivas

Tue Dec 08 07:00 PM -- 07:10 PM (PST) @ Orals & Spotlights: Reinforcement Learning

Learning from visual observations is a fundamental yet challenging problem in Reinforcement Learning (RL). Although algorithmic advances combined with convolutional neural networks have proved to be a recipe for success, current methods are still lacking on two fronts: (a) data-efficiency of learning and (b) generalization to new environments. To this end, we present Reinforcement Learning with Augmented Data (RAD), a simple plug-and-play module that can enhance most RL algorithms. We perform the first extensive study of general data augmentations for RL on both pixel-based and state-based inputs, and introduce two new data augmentations - random translate and random amplitude scale. We show that augmentations such as random translate, crop, color jitter, patch cutout, random convolutions, and amplitude scale can enable simple RL algorithms to outperform complex state-of-the-art methods across common benchmarks. RAD sets a new state-of-the-art in terms of data-efficiency and final performance on the DeepMind Control Suite benchmark for pixel-based control as well as OpenAI Gym benchmark for state-based control. We further demonstrate that RAD significantly improves test-time generalization over existing methods on several OpenAI ProcGen benchmarks.

Author Information

Misha Laskin (UC Berkeley)
Kimin Lee (UC Berkeley)
Adam Stooke (UC Berkeley)
Lerrel Pinto (New York University)
Pieter Abbeel (UC Berkeley & covariant.ai)

Pieter Abbeel is Professor and Director of the Robot Learning Lab at UC Berkeley [2008- ], Co-Director of the Berkeley AI Research (BAIR) Lab, Co-Founder of covariant.ai [2017- ], Co-Founder of Gradescope [2014- ], Advisor to OpenAI, Founding Faculty Partner AI@TheHouse venture fund, Advisor to many AI/Robotics start-ups. He works in machine learning and robotics. In particular his research focuses on making robots learn from people (apprenticeship learning), how to make robots learn through their own trial and error (reinforcement learning), and how to speed up skill acquisition through learning-to-learn (meta-learning). His robots have learned advanced helicopter aerobatics, knot-tying, basic assembly, organizing laundry, locomotion, and vision-based robotic manipulation. He has won numerous awards, including best paper awards at ICML, NIPS and ICRA, early career awards from NSF, Darpa, ONR, AFOSR, Sloan, TR35, IEEE, and the Presidential Early Career Award for Scientists and Engineers (PECASE). Pieter's work is frequently featured in the popular press, including New York Times, BBC, Bloomberg, Wall Street Journal, Wired, Forbes, Tech Review, NPR.

Aravind Srinivas (UC Berkeley)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors