Timezone: »

Improved Sample Complexity for Incremental Autonomous Exploration in MDPs
Jean Tarbouriech · Matteo Pirotta · Michal Valko · Alessandro Lazaric

Tue Dec 08 09:00 AM -- 11:00 AM (PST) @ Poster Session 1 #192
We study the problem of exploring an unknown environment when no reward function is provided to the agent. Building on the incremental exploration setting introduced by Lim and Auer (2012), we define the objective of learning the set of $\epsilon$-optimal goal-conditioned policies attaining all states that are incrementally reachable within $L$ steps (in expectation) from a reference state $s_0$. In this paper, we introduce a novel model-based approach that interleaves discovering new states from $s_0$ and improving the accuracy of a model estimate that is used to compute goal-conditioned policies. The resulting algorithm, DisCo, achieves a sample complexity scaling as $\widetilde{O}_{\epsilon}(L^5 S_{L+\epsilon} \Gamma_{L+\epsilon} A \epsilon^{-2})$, where $A$ is the number of actions, $S_{L+\epsilon}$ is the number of states that are incrementally reachable from $s_0$ in $L+\epsilon$ steps, and $\Gamma_{L+\epsilon}$ is the branching factor of the dynamics over such states. This improves over the algorithm proposed in (Lim and Auer, 2012) in both $\epsilon$ and $L$ at the cost of an extra $\Gamma_{L+\epsilon}$ factor, which is small in most environments of interest. Furthermore, DisCo is the first algorithm that can return an $\epsilon/c_{\min}$-optimal policy for any cost-sensitive shortest-path problem defined on the $L$-reachable states with minimum cost $c_{\min}$. Finally, we report preliminary empirical results confirming our theoretical findings.

Author Information

Jean Tarbouriech (Facebook AI Research & Inria)
Matteo Pirotta (Facebook AI Research)
Michal Valko (DeepMind Paris and Inria Lille - Nord Europe)

Michal is a research scientist in DeepMind Paris and SequeL team at Inria Lille - Nord Europe, France, lead by Philippe Preux and Rémi Munos. He also teaches the course Graphs in Machine Learning at l'ENS Cachan. Michal is primarily interested in designing algorithms that would require as little human supervision as possible. This means 1) reducing the “intelligence” that humans need to input into the system and 2) minimising the data that humans need spend inspecting, classifying, or “tuning” the algorithms. Another important feature of machine learning algorithms should be the ability to adapt to changing environments. That is why he is working in domains that are able to deal with minimal feedback, such as semi-supervised learning, bandit algorithms, and anomaly detection. The common thread of Michal's work has been adaptive graph-based learning and its application to the real world applications such as recommender systems, medical error detection, and face recognition. His industrial collaborators include Intel, Technicolor, and Microsoft Research. He received his PhD in 2011 from University of Pittsburgh under the supervision of Miloš Hauskrecht and after was a postdoc of Rémi Munos.

Alessandro Lazaric (Facebook Artificial Intelligence Research)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors