Timezone: »
We consider the problem of online learning with non-convex losses. In terms of feedback, we assume that the learner observes – or otherwise constructs – an inexact model for the loss function encountered at each stage, and we propose a mixed-strategy learning policy based on dual averaging. In this general context, we derive a series of tight regret minimization guarantees, both for the learner’s static (external) regret, as well as the regret incurred against the best dynamic policy in hindsight. Subsequently, we apply this general template to the case where the learner only has access to the actual loss incurred at each stage of the process. This is achieved by means of a kernel-based estimator which generates an inexact model for each round’s loss function using only the learner’s realized losses as input.
Author Information
Amélie Héliou (Criteo AI Lab)
Matthieu Martin (Criteo)
Senior researcher at Criteo
Panayotis Mertikopoulos (CNRS (French National Center for Scientific Research) and Criteo AI Lab)
Thibaud Rahier (Criteo AI Lab)
Ecole polytechnique graduate (Diplome d'ingenieur polytechnicien). Major: Applied Mathematics, Minors: Mathematics and Computer Science UC Berkeley graduate (M.A. in Statistics) PhD in Machine Learning (cifre) between INRIA and Schneider Electric in Grenoble, France Researcher at Criteo AI Lab in Grenoble, France
More from the Same Authors
-
2022 Poster: Diverse Weight Averaging for Out-of-Distribution Generalization »
Alexandre Rame · Matthieu Kirchmeyer · Thibaud Rahier · Alain Rakotomamonjy · Patrick Gallinari · Matthieu Cord -
2022 Poster: No-regret learning in games with noisy feedback: Faster rates and adaptivity via learning rate separation »
Yu-Guan Hsieh · Kimon Antonakopoulos · Volkan Cevher · Panayotis Mertikopoulos -
2022 Poster: On the convergence of policy gradient methods to Nash equilibria in general stochastic games »
Angeliki Giannou · Kyriakos Lotidis · Panayotis Mertikopoulos · Emmanouil-Vasileios Vlatakis-Gkaragkounis -
2021 Poster: Fast Routing under Uncertainty: Adaptive Learning in Congestion Games via Exponential Weights »
Dong Quan Vu · Kimon Antonakopoulos · Panayotis Mertikopoulos -
2021 Poster: Sifting through the noise: Universal first-order methods for stochastic variational inequalities »
Kimon Antonakopoulos · Thomas Pethick · Ali Kavis · Panayotis Mertikopoulos · Volkan Cevher -
2021 Poster: Adaptive First-Order Methods Revisited: Convex Minimization without Lipschitz Requirements »
Kimon Antonakopoulos · Panayotis Mertikopoulos -
2021 Poster: On the Rate of Convergence of Regularized Learning in Games: From Bandits and Uncertainty to Optimism and Beyond »
Angeliki Giannou · Emmanouil-Vasileios Vlatakis-Gkaragkounis · Panayotis Mertikopoulos -
2020 Poster: No-Regret Learning and Mixed Nash Equilibria: They Do Not Mix »
Emmanouil-Vasileios Vlatakis-Gkaragkounis · Lampros Flokas · Thanasis Lianeas · Panayotis Mertikopoulos · Georgios Piliouras -
2020 Spotlight: No-Regret Learning and Mixed Nash Equilibria: They Do Not Mix »
Emmanouil-Vasileios Vlatakis-Gkaragkounis · Lampros Flokas · Thanasis Lianeas · Panayotis Mertikopoulos · Georgios Piliouras -
2020 Poster: Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Variable Stepsize Scaling »
Yu-Guan Hsieh · Franck Iutzeler · Jérôme Malick · Panayotis Mertikopoulos -
2020 Poster: On the Almost Sure Convergence of Stochastic Gradient Descent in Non-Convex Problems »
Panayotis Mertikopoulos · Nadav Hallak · Ali Kavis · Volkan Cevher -
2020 Spotlight: Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Variable Stepsize Scaling »
Yu-Guan Hsieh · Franck Iutzeler · Jérôme Malick · Panayotis Mertikopoulos -
2019 Poster: On the convergence of single-call stochastic extra-gradient methods »
Yu-Guan Hsieh · Franck Iutzeler · Jérôme Malick · Panayotis Mertikopoulos -
2019 Poster: An adaptive Mirror-Prox method for variational inequalities with singular operators »
Kimon Antonakopoulos · Veronica Belmega · Panayotis Mertikopoulos -
2018 : Poster spotlight »
Tianbao Yang · Pavel Dvurechenskii · Panayotis Mertikopoulos · Hugo Berard -
2018 Poster: Bandit Learning in Concave N-Person Games »
Mario Bravo · David Leslie · Panayotis Mertikopoulos -
2018 Poster: Learning in Games with Lossy Feedback »
Zhengyuan Zhou · Panayotis Mertikopoulos · Susan Athey · Nicholas Bambos · Peter W Glynn · Yinyu Ye -
2017 Poster: Countering Feedback Delays in Multi-Agent Learning »
Zhengyuan Zhou · Panayotis Mertikopoulos · Nicholas Bambos · Peter W Glynn · Claire Tomlin -
2017 Poster: Learning with Bandit Feedback in Potential Games »
Amélie Héliou · Johanne Cohen · Panayotis Mertikopoulos -
2017 Poster: Stochastic Mirror Descent in Variationally Coherent Optimization Problems »
Zhengyuan Zhou · Panayotis Mertikopoulos · Nicholas Bambos · Stephen Boyd · Peter W Glynn