Timezone: »

 
Poster
Fairness with Overlapping Groups; a Probabilistic Perspective
Forest Yang · Mouhamadou M Cisse · Sanmi Koyejo

Wed Dec 09 09:00 AM -- 11:00 AM (PST) @ Poster Session 3 #872

In algorithmically fair prediction problems, a standard goal is to ensure the equality of fairness metrics across multiple overlapping groups simultaneously. We reconsider this standard fair classification problem using a probabilistic population analysis, which, in turn, reveals the Bayes-optimal classifier. Our approach unifies a variety of existing group-fair classification methods and enables extensions to a wide range of non-decomposable multiclass performance metrics and fairness measures. The Bayes-optimal classifier further inspires consistent procedures for algorithmically fair classification with overlapping groups. On a variety of real datasets, the proposed approach outperforms baselines in terms of its fairness-performance tradeoff.

Author Information

Forest Yang (UC Berkeley)
Mouhamadou M Cisse (KAUST)
Sanmi Koyejo (Illinois / Google)
Sanmi Koyejo

Sanmi Koyejo an Assistant Professor in the Department of Computer Science at Stanford University. Koyejo also spends time at Google as a part of the Brain team. Koyejo's research interests are in developing the principles and practice of trustworthy machine learning. Additionally, Koyejo focuses on applications to neuroscience and healthcare. Koyejo has been the recipient of several awards, including a best paper award from the conference on uncertainty in artificial intelligence (UAI), a Skip Ellis Early Career Award, and a Sloan Fellowship. Koyejo serves as the president of the Black in AI organization.

More from the Same Authors