Timezone: »
Potential-based reward shaping provides an approach for designing good reward functions, with the purpose of speeding up learning. However, automatically finding potential functions for complex environments is a difficult problem (in fact, of the same difficulty as learning a value function from scratch). We propose a new framework for learning potential functions by leveraging ideas from graph representation learning. Our approach relies on Graph Convolutional Networks which we use as a key ingredient in combination with the probabilistic inference view of reinforcement learning. More precisely, we leverage Graph Convolutional Networks to perform message passing from rewarding states. The propagated messages can then be used as potential functions for reward shaping to accelerate learning. We verify empirically that our approach can achieve considerable improvements in both small and high-dimensional control problems.
Author Information
Martin Klissarov (Mila/McGill University)
Doina Precup (McGill University / Mila / DeepMind Montreal)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Spotlight: Reward Propagation Using Graph Convolutional Networks »
Thu Dec 10th 03:50 -- 04:00 PM Room Orals & Spotlights: Reinforcement Learning
More from the Same Authors
-
2020 Workshop: Offline Reinforcement Learning »
Aviral Kumar · Rishabh Agarwal · George Tucker · Lihong Li · Doina Precup · Aviral Kumar -
2020 Workshop: Biological and Artificial Reinforcement Learning »
Raymond Chua · Feryal Behbahani · Julie J Lee · Sara Zannone · Rui Ponte Costa · Blake Richards · Ida Momennejad · Doina Precup -
2020 Poster: An Equivalence between Loss Functions and Non-Uniform Sampling in Experience Replay »
Scott Fujimoto · David Meger · Doina Precup -
2020 Poster: Forethought and Hindsight in Credit Assignment »
Veronica Chelu · Doina Precup · Hado van Hasselt -
2019 Workshop: Biological and Artificial Reinforcement Learning »
Raymond Chua · Sara Zannone · Feryal Behbahani · Rui Ponte Costa · Claudia Clopath · Blake Richards · Doina Precup -
2019 Poster: Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks »
Sitao Luan · Mingde Zhao · Xiao-Wen Chang · Doina Precup -
2018 Poster: Temporal Regularization for Markov Decision Process »
Pierre Thodoroff · Audrey Durand · Joelle Pineau · Doina Precup -
2018 Poster: Learning Safe Policies with Expert Guidance »
Jessie Huang · Fa Wu · Doina Precup · Yang Cai -
2017 Workshop: Hierarchical Reinforcement Learning »
Andrew G Barto · Doina Precup · Shie Mannor · Tom Schaul · Roy Fox · Carlos Florensa -
2016 Workshop: The Future of Interactive Machine Learning »
Kory Mathewson · Kaushik Subramanian · Mark Ho · Robert Loftin · Joseph L Austerweil · Anna Harutyunyan · Doina Precup · Layla El Asri · Matthew Gombolay · Jerry Zhu · Sonia Chernova · Charles Isbell · Patrick M Pilarski · Weng-Keen Wong · Manuela Veloso · Julie A Shah · Matthew Taylor · Brenna Argall · Michael Littman -
2015 Poster: Data Generation as Sequential Decision Making »
Philip Bachman · Doina Precup -
2015 Spotlight: Data Generation as Sequential Decision Making »
Philip Bachman · Doina Precup -
2015 Poster: Basis refinement strategies for linear value function approximation in MDPs »
Gheorghe Comanici · Doina Precup · Prakash Panangaden -
2014 Workshop: From Bad Models to Good Policies (Sequential Decision Making under Uncertainty) »
Odalric-Ambrym Maillard · Timothy A Mann · Shie Mannor · Jeremie Mary · Laurent Orseau · Thomas Dietterich · Ronald Ortner · Peter Grünwald · Joelle Pineau · Raphael Fonteneau · Georgios Theocharous · Esteban D Arcaute · Christos Dimitrakakis · Nan Jiang · Doina Precup · Pierre-Luc Bacon · Marek Petrik · Aviv Tamar -
2014 Poster: Optimizing Energy Production Using Policy Search and Predictive State Representations »
Yuri Grinberg · Doina Precup · Michel Gendreau -
2014 Poster: Learning with Pseudo-Ensembles »
Philip Bachman · Ouais Alsharif · Doina Precup -
2014 Spotlight: Optimizing Energy Production Using Policy Search and Predictive State Representations »
Yuri Grinberg · Doina Precup · Michel Gendreau -
2013 Poster: Learning from Limited Demonstrations »
Beomjoon Kim · Amir-massoud Farahmand · Joelle Pineau · Doina Precup -
2013 Poster: Bellman Error Based Feature Generation using Random Projections on Sparse Spaces »
Mahdi Milani Fard · Yuri Grinberg · Amir-massoud Farahmand · Joelle Pineau · Doina Precup -
2013 Spotlight: Learning from Limited Demonstrations »
Beomjoon Kim · Amir-massoud Farahmand · Joelle Pineau · Doina Precup -
2012 Poster: Value Pursuit Iteration »
Amir-massoud Farahmand · Doina Precup -
2012 Poster: On-line Reinforcement Learning Using Incremental Kernel-Based Stochastic Factorization »
Andre S Barreto · Doina Precup · Joelle Pineau -
2011 Poster: Reinforcement Learning using Kernel-Based Stochastic Factorization »
Andre S Barreto · Doina Precup · Joelle Pineau -
2009 Poster: Convergent Temporal-Difference Learning with Arbitrary Smooth Function Approximation »
Hamid R Maei · Csaba Szepesvari · Shalabh Batnaghar · Doina Precup · David Silver · Richard Sutton -
2009 Spotlight: Convergent Temporal-Difference Learning with Arbitrary Smooth Function Approximation »
Hamid R Maei · Csaba Szepesvari · Shalabh Batnaghar · Doina Precup · David Silver · Richard Sutton -
2008 Poster: Bounding Performance Loss in Approximate MDP Homomorphisms »
Doina Precup · Jonathan Taylor Taylor · Prakash Panangaden