Timezone: »
Mutual information (MI) is a commonly adopted utility function in Bayesian optimal experimental design (BOED). While theoretically appealing, MI evaluation poses a significant computational burden for most real world applications. As a result, many algorithms utilize MI bounds as proxies that lack regret-style guarantees. Here, we utilize two-sided bounds to provide such guarantees. Bounds are successively refined/tightened through additional computation until a desired guarantee is achieved. We consider the problem of adaptively allocating computational resources in BOED. Our approach achieves the same guarantee as existing methods, but with fewer evaluations of the costly MI reward. We adapt knapsack optimization of best arm identification problems, with important differences that impact overall algorithm design and performance. First, observations of MI rewards are biased. Second, evaluating experiments incurs shared costs amongst all experiments (posterior sampling) in addition to per experiment costs that may vary with increasing evaluation. We propose and demonstrate an algorithm that accounts for these variable costs in the refinement decision.
Author Information
Sue Zheng (MIT)
David Hayden (Massachusetts Institute of Technology)
Jason Pacheco (Univ. of Arizona)
John Fisher III (MIT)
More from the Same Authors
-
2022 : Posterior Consistency for Gaussian Process Surrogate Models with Generalized Observations »
Rujian Chen · John Fisher III -
2023 Poster: On Convergence of Polynomial Approximations to the Gaussian Mixture Entropy »
Caleb Dahlke · Jason Pacheco -
2020 Poster: Belief-Dependent Macro-Action Discovery in POMDPs using the Value of Information »
Genevieve Flaspohler · Nick Roy · John Fisher III -
2015 Poster: Streaming, Distributed Variational Inference for Bayesian Nonparametrics »
Trevor Campbell · Julian Straub · John Fisher III · Jonathan How -
2015 Poster: Probabilistic Variational Bounds for Graphical Models »
Qiang Liu · John Fisher III · Alexander Ihler -
2014 Poster: Coresets for k-Segmentation of Streaming Data »
Guy Rosman · Mikhail Volkov · Dan Feldman · John Fisher III · Daniela Rus -
2014 Poster: Parallel Sampling of HDPs using Sub-Cluster Splits »
Jason Chang · John Fisher III -
2013 Poster: Parallel Sampling of DP Mixture Models using Sub-Cluster Splits »
Jason Chang · John Fisher III -
2012 Workshop: Bayesian Nonparametric Models For Reliable Planning And Decision-Making Under Uncertainty »
Jonathan How · Lawrence Carin · John Fisher III · Michael Jordan · Alborz Geramifard -
2012 Poster: Coupling Nonparametric Mixtures via Latent Dirichlet Processes »
Dahua Lin · John Fisher III -
2010 Oral: Construction of Dependent Dirichlet Processes based on Poisson Processes »
Dahua Lin · Eric Grimson · John Fisher III -
2010 Poster: Construction of Dependent Dirichlet Processes based on Poisson Processes »
Dahua Lin · Eric Grimson · John Fisher III