Timezone: »
Recommendation techniques are important approaches for alleviating information overload. Being often trained on implicit user feedback, many recommenders suffer from the sparsity challenge due to the lack of explicitly negative samples. The GAN-style recommenders (i.e., IRGAN) addresses the challenge by learning a generator and a discriminator adversarially, such that the generator produces increasingly difficult samples for the discriminator to accelerate optimizing the discrimination objective. However, producing samples from the generator is very time-consuming, and our empirical study shows that the discriminator performs poor in top-k item recommendation. To this end, a theoretical analysis is made for the GAN-style algorithms, showing that the generator of limit capacity is diverged from the optimal generator. This may interpret the limitation of discriminator's performance. Based on these findings, we propose a Sampling-Decomposable Generative Adversarial Recommender (SD-GAR). In the framework, the divergence between some generator and the optimum is compensated by self-normalized importance sampling; the efficiency of sample generation is improved with a sampling-decomposable generator, such that each sample can be generated in O(1) with the Vose-Alias method. Interestingly, due to decomposability of sampling, the generator can be optimized with the closed-form solutions in an alternating manner, being different from policy gradient in the GAN-style algorithms. We extensively evaluate the proposed algorithm with five real-world recommendation datasets. The results show that SD-GAR outperforms IRGAN by 12.4% and the SOTA recommender by 10% on average. Moreover, discriminator training can be 20x faster on the dataset with more than 120K items.
Author Information
Binbin Jin (University of Science and Technology of China)
Defu Lian (University of Science and Technology of China)
Zheng Liu (Microsoft)
Qi Liu (" University of Science and Technology of China, China")
Jianhui Ma (University of Science and Technology of China)
Xing Xie (Microsoft Research Asia)
Enhong Chen (University of Science and Technology of China)
More from the Same Authors
-
2022 Poster: DARE: Disentanglement-Augmented Rationale Extraction »
Linan Yue · Qi Liu · Yichao Du · Yanqing An · Li Wang · Enhong Chen -
2022 Poster: Hierarchical Graph Transformer with Adaptive Node Sampling »
ZAIXI ZHANG · Qi Liu · Qingyong Hu · Chee-Kong Lee -
2023 Poster: FairLISA: Fair User Modeling with Limited Sensitive Attributes Information »
zheng zhang · Qi Liu · Hao Jiang · Fei Wang · Yan Zhuang · Le Wu · Weibo Gao · Enhong Chen -
2023 Poster: A Bounded Ability Estimation for Computerized Adaptive Testing »
Yan Zhuang · Qi Liu · Guanhao Zhao · Zhenya Huang · Weizhe Huang · Zachary Pardos · Enhong Chen · Jinze Wu · Xin Li -
2023 Poster: Cross-links Matter for Link Prediction: Rethinking the Debiased GNN from a Data Perspective »
Zihan Luo · Jianxun Lian · Hong Huang · Xiran Song · Xing Xie · Hai Jin -
2023 Poster: Bayesian Active Causal Discovery with Multi-Fidelity Experiments »
Zeyu Zhang · Chaozhuo Li · Xu Chen · Xing Xie -
2023 Poster: Frequency-domain MLPs are More Effective Learners in Time Series Forecasting »
Kun Yi · Qi Zhang · Wei Fan · Hui He · Pengyang Wang · Shoujin Wang · Ning An · Defu Lian · Longbing Cao · Zhendong Niu -
2023 Poster: Knowledge Distillation for High Dimensional Search Index »
Zepu Lu · Jin Chen · Defu Lian · ZAIXI ZHANG · Yong Ge · Enhong Chen -
2023 Poster: Full-Atom Protein Pocket Design via Iterative Refinement »
ZAIXI ZHANG · Zepu Lu · Hao Zhongkai · Marinka Zitnik · Qi Liu -
2023 Poster: AdaptSSR: Pre-training User Model with Augmentation-Adaptive Self-Supervised Ranking »
Yang Yu · Qi Liu · Kai Zhang · Yuren Zhang · Chao Song · Min Hou · Yuqing Yuan · Zhihao Ye · ZAIXI ZHANG · Sanshi Lei Yu -
2023 Poster: Model-enhanced Vector Index »
Hailin Zhang · Yujing Wang · Qi Chen · Ruiheng Chang · Ting Zhang · Ziming Miao · Yingyan Hou · Yang Ding · Xupeng Miao · Haonan Wang · Bochen Pang · Yuefeng Zhan · Hao Sun · Weiwei Deng · Qi Zhang · Fan Yang · Xing Xie · Mao Yang · Bin CUI -
2023 Poster: V-InFoR: A Robust Graph Neural Networks Explainer for Structurally Corrupted Graphs »
Jun Yin · Senzhang Wang · Chaozhuo Li · Xing Xie · Jianxin Wang -
2023 Poster: Adaptive Normalization for Non-stationary Time Series Forecasting: A Temporal Slice Perspective »
Zhiding Liu · Mingyue Cheng · Zhi Li · Zhenya Huang · Qi Liu · Yanhu Xie · Enhong Chen -
2023 Poster: A Comprehensive Study on Text-attributed Graphs: Benchmarking and Rethinking »
Hao Yan · Chaozhuo Li · Ruosong Long · Chao Yan · Jianan Zhao · Wenwen Zhuang · Jun Yin · Peiyan Zhang · Weihao Han · Hao Sun · Weiwei Deng · Qi Zhang · Lichao Sun · Xing Xie · Senzhang Wang -
2022 Spotlight: Lightning Talks 5B-4 »
Yuezhi Yang · Zeyu Yang · Yong Lin · Yishi Xu · Linan Yue · Tao Yang · Weixin Chen · Qi Liu · Jiaqi Chen · Dongsheng Wang · Baoyuan Wu · Yuwang Wang · Hao Pan · Shengyu Zhu · Zhenwei Miao · Yan Lu · Lu Tan · Bo Chen · Yichao Du · Haoqian Wang · Wei Li · Yanqing An · Ruiying Lu · Peng Cui · Nanning Zheng · Li Wang · Zhibin Duan · Xiatian Zhu · Mingyuan Zhou · Enhong Chen · Li Zhang -
2022 Spotlight: DARE: Disentanglement-Augmented Rationale Extraction »
Linan Yue · Qi Liu · Yichao Du · Yanqing An · Li Wang · Enhong Chen -
2022 Spotlight: Hierarchical Graph Transformer with Adaptive Node Sampling »
ZAIXI ZHANG · Qi Liu · Qingyong Hu · Chee-Kong Lee -
2022 Poster: A Neural Corpus Indexer for Document Retrieval »
Yujing Wang · Yingyan Hou · Haonan Wang · Ziming Miao · Shibin Wu · Hao Sun · Qi Chen · Yuqing Xia · Chengmin Chi · Guoshuai Zhao · Zheng Liu · Xing Xie · Hao Sun · Weiwei Deng · Qi Zhang · Mao Yang -
2022 Poster: USB: A Unified Semi-supervised Learning Benchmark for Classification »
Yidong Wang · Hao Chen · Yue Fan · Wang SUN · Ran Tao · Wenxin Hou · Renjie Wang · Linyi Yang · Zhi Zhou · Lan-Zhe Guo · Heli Qi · Zhen Wu · Yu-Feng Li · Satoshi Nakamura · Wei Ye · Marios Savvides · Bhiksha Raj · Takahiro Shinozaki · Bernt Schiele · Jindong Wang · Xing Xie · Yue Zhang -
2022 Poster: FairVFL: A Fair Vertical Federated Learning Framework with Contrastive Adversarial Learning »
Tao Qi · Fangzhao Wu · Chuhan Wu · Lingjuan Lyu · Tong Xu · Hao Liao · Zhongliang Yang · Yongfeng Huang · Xing Xie -
2022 Poster: Graph Convolution Network based Recommender Systems: Learning Guarantee and Item Mixture Powered Strategy »
Leyan Deng · Defu Lian · Chenwang Wu · Enhong Chen -
2022 Poster: Cache-Augmented Inbatch Importance Resampling for Training Recommender Retriever »
Jin Chen · Defu Lian · Yucheng Li · Baoyun Wang · Kai Zheng · Enhong Chen -
2022 Poster: Self-explaining deep models with logic rule reasoning »
Seungeon Lee · Xiting Wang · Sungwon Han · Xiaoyuan Yi · Xing Xie · Meeyoung Cha -
2022 Poster: Recommender Forest for Efficient Retrieval »
Chao Feng · Wuchao Li · Defu Lian · Zheng Liu · Enhong Chen -
2021 Poster: GraphFormers: GNN-nested Transformers for Representation Learning on Textual Graph »
Junhan Yang · Zheng Liu · Shitao Xiao · Chaozhuo Li · Defu Lian · Sanjay Agrawal · Amit Singh · Guangzhong Sun · Xing Xie -
2021 Poster: Meta-learning with an Adaptive Task Scheduler »
Huaxiu Yao · Yu Wang · Ying Wei · Peilin Zhao · Mehrdad Mahdavi · Defu Lian · Chelsea Finn -
2021 Poster: Motif-based Graph Self-Supervised Learning for Molecular Property Prediction »
ZAIXI ZHANG · Qi Liu · Hao Wang · Chengqiang Lu · Chee-Kong Lee -
2020 Poster: Semi-Supervised Neural Architecture Search »
Renqian Luo · Xu Tan · Rui Wang · Tao Qin · Enhong Chen · Tie-Yan Liu -
2020 Poster: Incorporating BERT into Parallel Sequence Decoding with Adapters »
Junliang Guo · Zhirui Zhang · Linli Xu · Hao-Ran Wei · Boxing Chen · Enhong Chen -
2019 Poster: Efficient Pure Exploration in Adaptive Round Model »
Tianyuan Jin · Jieming SHI · Xiaokui Xiao · Enhong Chen -
2018 Poster: Neural Architecture Optimization »
Renqian Luo · Fei Tian · Tao Qin · Enhong Chen · Tie-Yan Liu -
2012 Poster: Image Denoising and Inpainting with Deep Neural Networks »
Junyuan Xie · Linli Xu · Enhong Chen