Timezone: »

 
Poster
Causal Discovery in Physical Systems from Videos
Yunzhu Li · Antonio Torralba · Anima Anandkumar · Dieter Fox · Animesh Garg

Wed Dec 09 09:00 AM -- 11:00 AM (PST) @ Poster Session 3 #874

Causal discovery is at the core of human cognition. It enables us to reason about the environment and make counterfactual predictions about unseen scenarios that can vastly differ from our previous experiences. We consider the task of causal discovery from videos in an end-to-end fashion without supervision on the ground-truth graph structure. In particular, our goal is to discover the structural dependencies among environmental and object variables: inferring the type and strength of interactions that have a causal effect on the behavior of the dynamical system. Our model consists of (a) a perception module that extracts a semantically meaningful and temporally consistent keypoint representation from images, (b) an inference module for determining the graph distribution induced by the detected keypoints, and (c) a dynamics module that can predict the future by conditioning on the inferred graph. We assume access to different configurations and environmental conditions, i.e., data from unknown interventions on the underlying system; thus, we can hope to discover the correct underlying causal graph without explicit interventions. We evaluate our method in a planar multi-body interaction environment and scenarios involving fabrics of different shapes like shirts and pants. Experiments demonstrate that our model can correctly identify the interactions from a short sequence of images and make long-term future predictions. The causal structure assumed by the model also allows it to make counterfactual predictions and extrapolate to systems of unseen interaction graphs or graphs of various sizes.

Author Information

Yunzhu Li (MIT)
Antonio Torralba (Massachusetts Institute of Technology)
Anima Anandkumar (NVIDIA / Caltech)

Anima Anandkumar is a Bren professor at Caltech CMS department and a director of machine learning research at NVIDIA. Her research spans both theoretical and practical aspects of large-scale machine learning. In particular, she has spearheaded research in tensor-algebraic methods, non-convex optimization, probabilistic models and deep learning. Anima is the recipient of several awards and honors such as the Bren named chair professorship at Caltech, Alfred. P. Sloan Fellowship, Young investigator awards from the Air Force and Army research offices, Faculty fellowships from Microsoft, Google and Adobe, and several best paper awards. Anima received her B.Tech in Electrical Engineering from IIT Madras in 2004 and her PhD from Cornell University in 2009. She was a postdoctoral researcher at MIT from 2009 to 2010, a visiting researcher at Microsoft Research New England in 2012 and 2014, an assistant professor at U.C. Irvine between 2010 and 2016, an associate professor at U.C. Irvine between 2016 and 2017 and a principal scientist at Amazon Web Services between 2016 and 2018.

Dieter Fox (NVIDIA / University of Washington)
Animesh Garg (Univ. of Toronto, Vector Institute, Nvidia)

I am a Assistant Professor of Computer Science at University of Toronto and a Faculty Member at the Vector Institute. p. My current research focuses on machine learning algorithms for perception and control in robotics.

More from the Same Authors